Multipolar Lattice Resonances in Plasmonic Finite-Size Metasurfaces
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Aluminum Square Array
3.2. Au Honeycomb Array
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, Y.; Schonbrun, E.; Yang, T.; Crozier, K.B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 2008, 93, 181108. [Google Scholar] [CrossRef]
- Kravets, V.G.; Schedin, F.; Grigorenko, A.N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 2008, 101, 087403. [Google Scholar] [CrossRef]
- Vecchi, G.; Giannini, V.; Gómez Rivas, J. Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys. Rev. B 2009, 80, 201401. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Li, R.; Park, J.E.; Guan, J.; Choo, P.; Hu, J.; Smeets, P.J.M.; Odom, T.W. Ultranarrow plasmon resonances from annealed nanoparticle lattices. Proc. Natl. Acad. Sci. USA 2020, 117, 23380–23384. [Google Scholar] [CrossRef] [PubMed]
- Bin-Alam, M.S.; Reshef, O.; Mamchur, Y.; Alam, M.Z.; Carlow, G.; Upham, J.; Sullivan, B.T.; Ménard, J.M.; Huttunen, M.J.; Boyd, R.W.; et al. Ultra-high-Q resonances in plasmonic metasurfaces. Nat. Commun. 2021, 12, 974. [Google Scholar] [CrossRef] [PubMed]
- Laor, U.; Schatz, G.C. The role of surface roughness in surface enhanced raman spectroscopy (SERS): The importance of multiple plasmon resonances. Chem. Phys. Lett. 1981, 82, 566–570. [Google Scholar] [CrossRef]
- Meier, M.; Liao, P.F.; Wokaun, A. Enhanced fields on rough surfaces: Dipolar interactions among particles of sizes exceeding the Rayleigh limit. J. Opt. Soc. Am. B 1985, 2, 931–949. [Google Scholar] [CrossRef]
- Carron, K.T.; Lehmann, H.W.; Fluhr, W.; Meier, M.; Wokaun, A. Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering. J. Opt. Soc. Am. B 1986, 3, 430–440. [Google Scholar] [CrossRef]
- Christ, A.; Tikhodeev, S.G.; Gippius, N.A.; Kuhl, J.; Giessen, H. Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys. Rev. Lett. 2003, 91, 183901. [Google Scholar] [CrossRef]
- Christ, A.; Zentgraf, T.; Kuhl, J.; Tikhodeev, S.G.; Gippius, N.A.; Giessen, H. Optical properties of planar metallic photonic crystal structures: Experiment and theory. Phys. Rev. B 2004, 70, 125113. [Google Scholar] [CrossRef]
- Zou, S.; Janel, N.; Schatz, G.C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 2004, 120, 10871–10875. [Google Scholar] [CrossRef]
- Zou, S.; Schatz, G.C. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. J. Chem. Phys. 2004, 121, 12606–12612. [Google Scholar] [CrossRef] [PubMed]
- Markel, V.A. Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres. J. Phys. B Atom. Mol. Opt. Phys. 2005, 38, L115–L121. [Google Scholar] [CrossRef] [Green Version]
- Byelobrov, V.O.; Zinenko, T.L.; Kobayashi, K.; Nosich, A.I. Periodicity matters: Grating or lattice resonances in the scattering by sparse arrays of subwavelength strips and wires. IEEE Ant. Prop. Mag. 2015, 57, 34–45. [Google Scholar] [CrossRef]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic surface lattice resonances: A review of properties and applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Plum, E.; Singh, R. Surface lattice resonances in THz metamaterials. Photonics 2019, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Utyushev, A.D.; Zakomirnyi, V.I.; Rasskazov, I.L. Collective lattice resonances: Plasmonics and beyond. Rev. Phys. 2021, 6, 100051. [Google Scholar] [CrossRef]
- Wang, B.; Yu, P.; Wang, W.; Zhang, X.; Kuo, H.c.; Xu, H.; Wang, Z.M. High-Q Plasmonic Resonances: Fundamentals and Applications. Adv. Opt. Mater. 2021, 2001520. [Google Scholar] [CrossRef]
- De Abajo, F.J.G. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 2007, 79, 1267–1290. [Google Scholar] [CrossRef] [Green Version]
- Cherqui, C.; Bourgeois, M.R.; Wang, D.; Schatz, G.C. Plasmonic surface lattice resonances: Theory and computation. Acc. Chem. Res. 2019, 52, 2548–2558. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Reinhardt, C.; Seidel, A.; Luk’yanchuk, B.S.; Chichkov, B.N. Optical response features of Si-nanoparticle arrays. Phys. Rev. B 2010, 82, 045404. [Google Scholar] [CrossRef] [Green Version]
- Babicheva, V.E.; Evlyukhin, A.B. Analytical model of resonant electromagnetic dipole-quadrupole coupling in nanoparticle arrays. Phys. Rev. B 2019, 99, 195444. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.; Schatz, G.C. Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: Narrow lineshapes with tunable widths. Nanotechnology 2006, 17, 2813–2820. [Google Scholar] [CrossRef]
- Sung, J.; Hicks, E.M.; Van Duyne, R.P.; Spears, K.G. Nanoparticle spectroscopy: Plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles. J. Phys. Chem. C 2008, 112, 4091–4096. [Google Scholar] [CrossRef]
- Rodriguez, S.; Schaafsma, M.; Berrier, A.; Gómez Rivas, J. Collective resonances in plasmonic crystals: Size matters. Phys. B Condens. Matter 2012, 407, 4081–4085. [Google Scholar] [CrossRef] [Green Version]
- Mahi, N.; Lévêque, G.; Saison, O.; Marae-Djouda, J.; Caputo, R.; Gontier, A.; Maurer, T.; Adam, P.M.; Bouhafs, B.; Akjouj, A. In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers. J. Phys. Chem. C 2017, 121, 2388–2401. [Google Scholar] [CrossRef]
- Martikainen, J.P.; Moilanen, A.J.; Törmä, P. Coupled dipole approximation across the Γ-point in a finite-sized nanoparticle array. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160316. [Google Scholar] [CrossRef] [Green Version]
- Manjavacas, A.; Zundel, L.; Sanders, S. Analysis of the limits of the near-field produced by nanoparticle arrays. ACS Nano 2019, 13, 10682–10693. [Google Scholar] [CrossRef]
- Zundel, L.; Manjavacas, A. Finite-size effects on periodic arrays of nanostructures. J. Phys. Photonics 2019, 1, 015004. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Bourgeois, M.R.; Guan, J.; Fumani, A.K.; Schatz, G.C.; Odom, T.W. Lasing from finite plasmonic nanoparticle lattices. ACS Photonics 2020, 7, 630–636. [Google Scholar] [CrossRef]
- Babicheva, V.E.; Evlyukhin, A.B. Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical responses. Laser Photonics Rev. 2017, 11, 1700132. [Google Scholar] [CrossRef] [Green Version]
- Zakomirnyi, V.I.; Karpov, S.V.; Ågren, H.; Rasskazov, I.L. Collective lattice resonances in disordered and quasi-random all-dielectric metasurfaces. J. Opt. Soc. Am. B 2019, 36, E21–E29. [Google Scholar] [CrossRef]
- Zakomirnyi, V.I.; Ershov, A.E.; Gerasimov, V.S.; Karpov, S.V.; Ågren, H.; Rasskazov, I.L. Collective lattice resonances in arrays of dielectric nanoparticles: A matter of size. Opt. Lett. 2019, 44, 5743–5746. [Google Scholar] [CrossRef] [PubMed]
- Utyushev, A.D.; Zakomirnyi, V.I.; Ershov, A.E.; Gerasimov, V.S.; Karpov, S.V.; Rasskazov, I.L. Collective lattice resonances in all-dielectric nanostructures under oblique incidence. Photonics 2020, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Babicheva, V.E.; Evlyukhin, A.B. Multipole lattice effects in high refractive index metasurfaces. J. Appl. Phys. 2021, 129, 040902. [Google Scholar] [CrossRef]
- Liu, T.; Xu, R.; Yu, P.; Wang, Z.; Takahara, J. Multipole and multimode engineering in Mie resonance-based metastructures. Nanophotonics 2020, 9, 1115–1137. [Google Scholar] [CrossRef]
- Giannini, V.; Vecchi, G.; Gómez Rivas, J. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys. Rev. Lett. 2010, 105, 266801. [Google Scholar] [CrossRef] [Green Version]
- DeJarnette, D.; Roper, D.K.; Harbin, B. Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays. J. Opt. Soc. Am. B 2012, 29, 88–100. [Google Scholar] [CrossRef]
- Babicheva, V.E.; Evlyukhin, A.B. Metasurfaces with electric quadrupole and magnetic dipole resonant coupling. ACS Photonics 2018, 5, 2022–2033. [Google Scholar] [CrossRef] [Green Version]
- Babicheva, V.E. Multipole resonances in transdimensional lattices of plasmonic and silicon nanoparticles. MRS Adv. 2019, 4, 713–722. [Google Scholar] [CrossRef]
- Ershov, A.E.; Gerasimov, V.S.; Bikbaev, R.G.; Polyutov, S.P.; Karpov, S.V. Mode coupling in arrays of Al nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2020, 248, 106961. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Reinhardt, C.; Zywietz, U.; Chichkov, B.N. Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions. Phys. Rev. B 2012, 85, 245411. [Google Scholar] [CrossRef]
- Swiecicki, S.D.; Sipe, J.E. Surface-lattice resonances in two-dimensional arrays of spheres: Multipolar interactions and a mode analysis. Phys. Rev. B 2017, 95, 195406. [Google Scholar] [CrossRef] [Green Version]
- Gerasimov, V.S.; Ershov, A.E.; Bikbaev, R.G.; Rasskazov, I.L.; Isaev, I.L.; Semina, P.N.; Kostyukov, A.S.; Zakomirnyi, V.I.; Polyutov, S.P.; Karpov, S.V. Plasmonic lattice Kerker effect in ultraviolet-visible spectral range. Phys. Rev. B 2021, 103, 035402. [Google Scholar] [CrossRef]
- Wang, D.; Bourgeois, M.R.; Lee, W.K.; Li, R.; Trivedi, D.; Knudson, M.P.; Wang, W.; Schatz, G.C.; Odom, T.W. Stretchable nanolasing from hybrid quadrupole plasmons. Nano Lett. 2018, 18, 4549–4555. [Google Scholar] [CrossRef] [PubMed]
- Henson, J.; DiMaria, J.; Dimakis, E.; Moustakas, T.D.; Paiella, R. Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays. Opt. Lett. 2012, 37, 79–81. [Google Scholar] [CrossRef]
- Czaplicki, R.; Kiviniemi, A.; Laukkanen, J.; Lehtolahti, J.; Kuittinen, M.; Kauranen, M. Surface lattice resonances in second-harmonic generation from metasurfaces. Opt. Lett. 2016, 41, 2684–2687. [Google Scholar] [CrossRef] [PubMed]
- Fradkin, I.M.; Dyakov, S.A.; Gippius, N.A. Nanoparticle lattices with bases: Fourier modal method and dipole approximation. Phys. Rev. B 2020, 102, 045432. [Google Scholar] [CrossRef]
- Khlopin, D.; Laux, F.; Wardley, W.P.; Martin, J.; Wurtz, G.A.; Plain, J.; Bonod, N.; Zayats, A.V.; Dickson, W.; Gérard, D. Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays. J. Opt. Soc. Am. B 2017, 34, 691–700. [Google Scholar] [CrossRef]
- Li, R.; Wang, D.; Guan, J.; Wang, W.; Ao, X.; Schatz, G.C.; Schaller, R.; Odom, T.W. Plasmon nanolasing with aluminum nanoparticle arrays [Invited]. J. Opt. Soc. Am. B 2019, 36, E104–E111. [Google Scholar] [CrossRef]
- Huttunen, M.J.; Reshef, O.; Stolt, T.; Dolgaleva, K.; Boyd, R.W.; Kauranen, M. Efficient nonlinear metasurfaces by using multiresonant high-Q plasmonic arrays. J. Opt. Soc. Am. B 2019, 36, E30–E35. [Google Scholar] [CrossRef]
- Zakomirnyi, V.I.; Rasskazov, I.L.; Gerasimov, V.S.; Ershov, A.E.; Polyutov, S.P.; Karpov, S.V. Refractory titanium nitride two-dimensional structures with extremely narrow surface lattice resonances at telecommunication wavelengths. Appl. Phys. Lett. 2017, 111, 123107. [Google Scholar] [CrossRef]
- Humphrey, A.D.; Barnes, W.L. Plasmonic surface lattice resonances on arrays of different lattice symmetry. Phys. Rev. B 2014, 90, 075404. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Bourgeois, M.R.; Cherqui, C.; Guan, J.; Wang, D.; Hu, J.; Schaller, R.D.; Schatz, G.C.; Odom, T.W. Hierarchical hybridization in plasmonic honeycomb lattices. Nano Lett. 2019, 19, 6435–6441. [Google Scholar] [CrossRef] [PubMed]
- Fernique, F.; Weick, G. Plasmons in two-dimensional lattices of near-field coupled nanoparticles. Phys. Rev. B 2020, 102, 045420. [Google Scholar] [CrossRef]
- Becerril, D.; Vázquez, O.; Piccotti, D.; Sandoval, E.M.; Cesca, T.; Mattei, G.; Noguez, C.; Pirruccio, G. Diffractive dipolar coupling in non-Bravais plasmonic lattices. Nanoscale Adv. 2020, 2, 1261–1268. [Google Scholar] [CrossRef]
- Guo, R.; Nečada, M.; Hakala, T.K.; Väkeväinen, A.I.; Törmä, P. Lasing at K points of a honeycomb plasmonic lattice. Phys. Rev. Lett. 2019, 122, 013901. [Google Scholar] [CrossRef] [Green Version]
- Lumerical Solutions. FDTD Solutions. Available online: https://www.lumerical.com/products/fdtd/ (accessed on 3 April 2021).
- Potter, M.; Bérenger, J.P. A Review of the Total Field/Scattered Field Technique for the FDTD Method. FERMAT 2017, 19, 1. [Google Scholar]
- Xu, Y.L. Electromagnetic scattering by an aggregate of spheres. Appl. Opt. 1995, 34, 4573. [Google Scholar] [CrossRef]
- Available online: https://scattport.org/files/xu/codes.htm (accessed on 3 April 2021).
- Karpov, S.V.; Gerasimov, V.S.; Isaev, I.L.; Markel, V.A. Local anisotropy and giant enhancement of local electromagnetic fields in fractal aggregates of metal nanoparticles. Phys. Rev. B 2005, 72, 205425. [Google Scholar] [CrossRef] [Green Version]
- Matricardi, C.; Hanske, C.; Garcia-Pomar, J.L.; Langer, J.; Mihi, A.; Liz-Marzán, L.M. Gold nanoparticle plasmonic superlattices as surface-enhanced Raman spectroscopy substrates. ACS Nano 2018, 12, 8531–8539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murai, S.; Cabello-Olmo, E.; Kamakura, R.; Calvo, M.E.; Lozano, G.; Atsumi, T.; Míguez, H.; Tanaka, K. Optical responses of localized and extended modes in a mesoporous layer on plasmonic array to isopropanol vapor. J. Phys. Chem. C 2020, 124, 5772–5779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odom, T.W.; Gao, H.; McMahon, J.M.; Henzie, J.; Schatz, G.C. Plasmonic superlattices: Hierarchical subwavelength hole arrays. Chem. Phys. Lett. 2009, 483, 187–192. [Google Scholar] [CrossRef]
- Hanske, C.; Tebbe, M.; Kuttner, C.; Bieber, V.; Tsukruk, V.V.; Chanana, M.; König, T.A.; Fery, A. Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly. Nano Lett. 2014, 14, 6863–6871. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Yang, A.; Hryn, A.J.; Schatz, G.C.; Odom, T.W. Superlattice plasmons in hierarchical Au nanoparticle arrays. ACS Photonics 2015, 2, 1789–1794. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostyukov, A.S.; Rasskazov, I.L.; Gerasimov, V.S.; Polyutov, S.P.; Karpov, S.V.; Ershov, A.E. Multipolar Lattice Resonances in Plasmonic Finite-Size Metasurfaces. Photonics 2021, 8, 109. https://doi.org/10.3390/photonics8040109
Kostyukov AS, Rasskazov IL, Gerasimov VS, Polyutov SP, Karpov SV, Ershov AE. Multipolar Lattice Resonances in Plasmonic Finite-Size Metasurfaces. Photonics. 2021; 8(4):109. https://doi.org/10.3390/photonics8040109
Chicago/Turabian StyleKostyukov, Artem S., Ilia L. Rasskazov, Valeriy S. Gerasimov, Sergey P. Polyutov, Sergey V. Karpov, and Alexander E. Ershov. 2021. "Multipolar Lattice Resonances in Plasmonic Finite-Size Metasurfaces" Photonics 8, no. 4: 109. https://doi.org/10.3390/photonics8040109
APA StyleKostyukov, A. S., Rasskazov, I. L., Gerasimov, V. S., Polyutov, S. P., Karpov, S. V., & Ershov, A. E. (2021). Multipolar Lattice Resonances in Plasmonic Finite-Size Metasurfaces. Photonics, 8(4), 109. https://doi.org/10.3390/photonics8040109