Femtosecond Laser Fabricated Apodized Fiber Bragg Gratings Based on Energy Regulation
Abstract
:1. Introduction
2. Principle and Methods
3. Design Results and Discussion
3.1. Spectral Comparison
3.2. Apodized FBG Temperature Testing
3.3. Apodized FBG Strain Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.H.; Cheng, Y.; Liu, X.J. Modulation of acoustic waves by a broadband metagrating. Sci. Rep. UK 2019, 9, 7271. [Google Scholar] [CrossRef]
- Wei, H.M.; Krishnaswamy, S. Comparative assessment of erbium fiber ring lasers and reflective SOA linear lasers for fiber Bragg grating dynamic strain sensing. Appl. Opt. 2017, 56, 3867–3874. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Jovanovic, N.; Marshall, G.D.; Withford, M.J. All-optical, actively Q-switched fiber laser. Opt. Express 2010, 18, 7714–7723. [Google Scholar] [CrossRef]
- Toba, M.; Mustafa, F.M.; Barakat, T.M. New simulation and analysis fiber Bragg grating: Narrow bandwidth without side lobes. J. Phys. Commun. 2020, 4, 075018. [Google Scholar] [CrossRef]
- Madrigal, J.; Fraile-Pelaez, F.J.; Zheng, D.; Barrera, D.; Sales, S. Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme. Opt. Express 2017, 25, 24650–24657. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiang, S.Y.; Wang, B.; Cao, X.Y.; Wen, A.J.; Hao, Y. Time-delay signature concealment and physical random bits generation in mutually coupled semiconductor lasers with FBG filtered injection. Opt. Express 2019, 27, 8446–8455. [Google Scholar] [CrossRef]
- Kumari, C.R.U.; Samiappan, D.; Kumar, R.; Sudhakar, T. Development of a highly accurate and fast responsive salinity sensor based on Nuttall apodized Fiber Bragg Grating coated with hygroscopic polymer for ocean observation. Opt. Fiber Technol. 2019, 53, 102036. [Google Scholar] [CrossRef]
- Mohammed, N.A.; Ali, T.A.; Aly, M.H. Performance optimization of apodized FBG-based temperature sensors in single and quasi-distributed DWDM systems with new and different apodization profiles. AIP Adv. 2013, 3, 122125. [Google Scholar] [CrossRef]
- Mohammed, N.A.; El Serafy, H.O. Ultra-sensitive quasi-distributed temperature sensor based on an apodized fiber Bragg grating. Appl. Opt. 2018, 57, 273–282. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Che, N.N.; Gong, J.H.; Chai, Q.; Ren, J.; Qi, H.F.; Luo, Y.H.; Lewis, E.; Zhang, J.Z.; Yang, J.; et al. Distributed Measurement of Regeneration Ratios of an Apodized Type I Fiber Bragg Grating. J. Lightwave Technol. 2019, 37, 6127–6132. [Google Scholar] [CrossRef]
- Osuch, T. Numerical analysis of the harmonic components of the Bragg wavelength content in spectral responses of apodized fiber Bragg gratings written by means of a phase mask with a variable phase step height. J. Opt. Soc. Am. A 2016, 33, 172–178. [Google Scholar] [CrossRef]
- Tian, K.; Chen, G.X.; Song, Q.Y. A two-step scanning-mask exposure method for the fabrication of arbitrary apodized fiber gratings. Optik 2017, 141, 24–31. [Google Scholar] [CrossRef]
- Li, Z.Z.; Wang, L.; Fan, H.; Yu, Y.H.; Sun, H.B.; Juodkazis, S.; Chen, Q.D. O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci. Appl. 2020, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, Q.D.; Cao, X.W.; Buividas, R.; Wang, X.W.; Juodkazis, S.; Sun, H.B. Plasmonic nano-printing: Large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl. 2017, 6, e17112. [Google Scholar] [CrossRef]
- Salter, P.S.; Booth, M.J. Adaptive optics in laser processing. Light Sci. Appl. 2019, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- Sugioka, K.; Cheng, Y. Femtosecond laser three-dimensional micro- and nanofabrication. Appl. Phys. Rev. 2014, 1, 041303. [Google Scholar] [CrossRef] [Green Version]
- Itoh, K.; Watanabe, W.; Nolte, S.; Schaffer, C.B. Ultrafast processes for bulk modification of transparent materials. MRS Bull. 2006, 31, 620–625. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Wang, Y.P.; Liao, C.R.; Wang, C.; Liu, S.; Yang, K.M.; Wang, Y.; Yuan, X.C.; Wang, G.P.; Zhang, W.J. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration. Sci. Rep. 2016, 6, 23379. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, X.Y.; Yu, Y.S.; Wei, W.H.; Guo, Q.; Qin, L.; Ning, Y.Q.; Wang, L.J.; Sun, H.B. Femtosecond Laser-Inscribed High-Order Bragg Gratings in Large-Diameter Sapphire Fibers for High-Temperature and Strain Sensing. J. Lightwave Technol. 2018, 36, 3302–3308. [Google Scholar] [CrossRef]
- Yang, S.; Hu, D.; Wang, A.B. Point-by-point fabrication and characterization of sapphire fiber Bragg gratings. Opt. Lett. 2017, 42, 4219–4222. [Google Scholar] [CrossRef] [PubMed]
- Antipov, S.; Ams, M.; Williams, R.J.; Magi, E.; Withford, M.J.; Fuerbach, A. Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings. Opt. Express 2016, 24, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Marshall, G.D.; Williams, R.J.; Jovanovic, N.; Steel, M.J.; Withford, M.J. Point-by-point written fiber-Bragg gratings and their application in complex grating designs. Opt. Express 2010, 18, 19844–19859. [Google Scholar] [CrossRef]
- Williams, R.J.; Kramer, R.G.; Nolte, S.; Withford, M.J.; Steel, M.J. Detuning in apodized point-by-point fiber Bragg gratings: Insights into the grating morphology. Opt. Express 2013, 21, 26854–26867. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Voigtlander, C.; Marshall, G.D.; Tunnermann, A.; Nolte, S.; Steel, M.J.; Withford, M.J. Point-by-point inscription of apodized fiber Bragg gratings. Opt. Lett. 2011, 36, 2988–2990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.; Voigtlander, C.; Becker, R.G.; Richter, D.; Tunnermann, A.; Nolte, S. Femtosecond pulse written fiber gratings: A new avenue to integrated fiber technology. Laser Photonics Rev. 2012, 6, 709–723. [Google Scholar] [CrossRef]
- Grobnic, D.; Mihailov, S.J.; Ballato, J.; Dragic, P.D. Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers. Optica 2015, 2, 313–322. [Google Scholar] [CrossRef]
- Jovanovic, N.; Thomas, J.; Williams, R.J.; Steel, M.J.; Marshall, G.D.; Fuerbach, A.; Nolte, S.; Tunnermann, A.; Withford, M.J. Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers. Opt. Express 2009, 17, 6082–6095. [Google Scholar] [CrossRef] [PubMed]
- Albert, J.; Shao, L.Y.; Caucheteur, C. Tilted fiber Bragg grating sensors. Laser Photonics Rev. 2013, 7, 83–108. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Zheng, Z.; Wang, B.; Pan, X.; Liu, S.; Tian, Z.; Chen, C.; Yu, Y. Femtosecond Laser Fabricated Apodized Fiber Bragg Gratings Based on Energy Regulation. Photonics 2021, 8, 110. https://doi.org/10.3390/photonics8040110
Guo Q, Zheng Z, Wang B, Pan X, Liu S, Tian Z, Chen C, Yu Y. Femtosecond Laser Fabricated Apodized Fiber Bragg Gratings Based on Energy Regulation. Photonics. 2021; 8(4):110. https://doi.org/10.3390/photonics8040110
Chicago/Turabian StyleGuo, Qi, Zhongming Zheng, Bo Wang, Xuepeng Pan, Shanren Liu, Zhennan Tian, Chao Chen, and Yongsen Yu. 2021. "Femtosecond Laser Fabricated Apodized Fiber Bragg Gratings Based on Energy Regulation" Photonics 8, no. 4: 110. https://doi.org/10.3390/photonics8040110
APA StyleGuo, Q., Zheng, Z., Wang, B., Pan, X., Liu, S., Tian, Z., Chen, C., & Yu, Y. (2021). Femtosecond Laser Fabricated Apodized Fiber Bragg Gratings Based on Energy Regulation. Photonics, 8(4), 110. https://doi.org/10.3390/photonics8040110