Phase Compensation Method in OPA System Based on the Linear Electro-Optic Effect
Abstract
:1. Introduction
2. Phase Mismatch Compensation Simulation
3. Experimental Setup and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ross, I.N.; Matousek, P.; Towrie, M.; Langley, A.J.; Collier, J.L. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt. Commun. 1997, 144, 125–133. [Google Scholar] [CrossRef]
- Bromage, J.; Bahk, S.W.; Begishev, I.A.; Dorrer, C.; Guardalben, M.J.; Hoffman, B.N.; Oliver, J.B.; Roides, R.G.; Schiesser, E.M.; Shoup, M.J., III; et al. Technology development for ultraintense all-opcpa systems. High Power Laser Sci. Eng. 2019, 7, e4. [Google Scholar] [CrossRef] [Green Version]
- Rimantas, B.; Tomas, S.; Jonas, A.; Aidas, A.; Gediminas, V.; Darius, G.; Stanislovas, B.; Andrejus, M.; Arūnas, V. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate. Opt. Express 2017, 25, 5797–5806. [Google Scholar]
- Zhu, J.Q.; Xie, X.L.; Yang, Q.W.; Kang, J.; Zhu, H.D.; Guo, A.L.; Zhu, P.; Gao, Q.; Liu, Z.G.; Fan, Q.T.; et al. Introduction to SG-II 5 PW laser facility. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016; IEEE: Piscataway Township, NJ, USA, 2016. [Google Scholar]
- Galletti, M.; Oliveira, P.; Galimberti, M.; Ahmad, M.; Archipovaite, G.; Booth, N.; Dilworth, E.; Frackiewic, A.; Winstone, T.; Musgrave, I.; et al. Ultra-broadband all-OPCPA petawatt facility fully based on LBO. High Power Laser Sci. Eng. 2020, 8, E31. [Google Scholar] [CrossRef]
- Galletti, M.; Pires, H.; Hariton, V.; Alves, J.; Oliveira, P.; Galimberti, M.; Figueira, G. Ultra-broadband near-infrared NOPAs based on the nonlinear crystals BiBO and YCOB. High Power Laser Sci. Eng. 2020, 8, E29. [Google Scholar] [CrossRef]
- Yu, L.; Liang, X.; Xu, L.; Li, W.; Peng, C.; Hu, Z.; Wang, C.; Lu, X.; Chu, Y.; Gan, Z. Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800nm. Opt. Lett. 2015, 40, 3412. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yu, L.; Liang, X.; Chu, Y.; Xu, Z. High-energy noncollinear optical parametric-chirped pulse amplification in LBO at 800 nm. Opt. Lett. 2013, 38, 4837. [Google Scholar] [CrossRef] [PubMed]
- Christoph, S.; Izhar, A.; Sandro, K.; Christoph, W.; Sergei, A.T.; Zsuzsanna, M.; Ferenc, K.; Stefan, K. Broadband amplification by picosecond OPCPA in DKDP pumped at 515 nm. Opt. Express. 2012, 20, 4619–4629. [Google Scholar]
- Marco, G.; Cristina, H.G.; Ian, M.; Ian, R.; Trevor, W. Influence of deuteration level of KD*P crystal on multi-PW class OPCPA laser. Opt. Commun. 2013, 309, 80–84. [Google Scholar]
- Lozhkarev, V.V.; Freidman, G.I.; Ginzburg, V.N.; Katin, E.V.; Khazanov, E.A.; Kirsanov, A.V.; Luchinin, G.A.; Mal’shakov, A.N.; Martyanov, M.A.; Palashov, O.V.; et al. Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser. Phys. Lett. 2007, 4, 421. [Google Scholar] [CrossRef]
- Cai, X.; Lin, X.; Li, G.; Lu, J.; Hu, Z.; Zheng, G. Rapid growth and properties of large-aperture 98%-deuterated DKDP crystals. High Power Laser Sci. Eng. 2019, 7, E46. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Xie, X.L.; Zhang, C.; Kang, J.; Yang, Q.W.; Zhu, P.; Guo, A.L.; Zhu, H.D.; Yang, S.H.; Cui, Z.R.; et al. Broadband main OPCPA amplifier at 808 nm wavelength in high deuterated DKDP crystals. Opt. Lett. 2018, 43, 5713–5716. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Liu, D.; Sun, M.; Miao, J.; Zhu, J.Q. Compensation method for temperature-induced phase mismatch during frequency conversion in high-power laser systems. J. Opt. Soc. Am. B 2016, 33, 525–534. [Google Scholar] [CrossRef]
- Sun, Z.; Cui, Z.; Sun, M.; Yuan, Y.; Li, Q.; Liu, D.; Zhu, J. Electro-optic coefficient measurement of a K(H1−xDx)2PO4 crystal based on χ(2) nonlinear optical technology. Opt. Express 2021, 29, 2647–2657. [Google Scholar] [CrossRef] [PubMed]
- Yariv, A.; Yeh, P. Photonics: Optical Electronics in Modern Communications, 6th ed.; Oxford University: Oxford, UK, 2007. [Google Scholar]
- Nikogosyan, D.N. Nonlinear Optical Crystals: A Complete Survey; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Liu, D. Phase Compensation Method in OPA System Based on the Linear Electro-Optic Effect. Photonics 2021, 8, 126. https://doi.org/10.3390/photonics8040126
Yang S, Liu D. Phase Compensation Method in OPA System Based on the Linear Electro-Optic Effect. Photonics. 2021; 8(4):126. https://doi.org/10.3390/photonics8040126
Chicago/Turabian StyleYang, Shuaishuai, and Dean Liu. 2021. "Phase Compensation Method in OPA System Based on the Linear Electro-Optic Effect" Photonics 8, no. 4: 126. https://doi.org/10.3390/photonics8040126
APA StyleYang, S., & Liu, D. (2021). Phase Compensation Method in OPA System Based on the Linear Electro-Optic Effect. Photonics, 8(4), 126. https://doi.org/10.3390/photonics8040126