Integrated Silicon Photonics for Enabling Next-Generation Space Systems
Abstract
:1. Introduction
2. Potential for Silicon Photonics in Optical Communications Systems
3. Microwave Photonics
4. Space Radiation Effects
4.1. Integrated Germanium Photodiodes
4.1.1. Photodiodes: Total-Ionizing Dose Effects
4.1.2. Photodiodes: Displacement Damage Effects
4.1.3. Photodiodes: Single-Event Effects
4.2. Integrated Silicon Waveguides
4.2.1. Waveguides: Total-Ionizing Dose Effects
4.2.2. Waveguides: Displacement Damage Effects
4.2.3. Waveguides: Single-Event Effects
4.3. Mach-Zehnder Modulators
4.3.1. MZM: Total-Ionizing Dose Effects
4.3.2. MZM: Displacement Damage Effects
4.4. System Integration Considerations
4.5. Radiation Effects: Takeaways
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agrawal, G.P. Optical Communication: Its History and Recent Progress. In Optics in Our Time; Al-Amri, M.D., El-Gomati, M., Zubairy, M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 177–199. [Google Scholar] [CrossRef] [Green Version]
- Essiambre, R.J.; Tkach, R.W. Capacity trends and limits of optical communication networks. Proc. IEEE 2012, 100, 1035–1055. [Google Scholar] [CrossRef]
- Rahim, A.; Spuesens, T.; Baets, R.; Bogaerts, W. Open-Access Silicon Photonics: Current Status and Emerging Initiatives. Proc. IEEE 2018, 106, 2313–2330. [Google Scholar] [CrossRef] [Green Version]
- Giewont, K.; Nummy, K.; Anderson, F.A.; Ayala, J.; Barwicz, T.; Bian, Y.; Dezfulian, K.K.; Gill, D.M.; Houghton, T.; Hu, S.; et al. 300-mm Monolithic Silicon Photonics Foundry Technology. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–11. [Google Scholar] [CrossRef]
- Sabella, R. Silicon Photonics for 5G and Future Networks. IEEE J. Sel. Top. Quantum Electron. 2020, 26. [Google Scholar] [CrossRef]
- Jet Propulsion Laboratory. Deep Space Communications. Available online: https://scienceandtechnology.jpl.nasa.gov/research/research-topics-list/communications-computing-software/deep-space-communications (accessed on 25 January 2020).
- Biswas, A.; Srinivasan, M.; Rogalin, R.; Piazzolla, S.; Liu, J.; Schratz, B.; Wong, A.; Alerstam, E.; Wright, M.; Roberts, W.T.; et al. Status of NASA’s deep space optical communication technology demonstration. In Proceedings of the 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Naha, Japan, 14–16 November 2017; pp. 23–27. [Google Scholar] [CrossRef]
- Biswas, A. NASA’s deep space optical communications—An update. Opt. InfoBase Conf. Pap. 2019, 1–2. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Free space optical communication: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 2017, 19, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Schier, J.S.; Rush, J.J.; Dan Williams, W.; Vrotsos, P. Space communication architecture supporting exploration and science: Plans and studies for 2010–2030. In Proceedings of the A Collection of Technical Papers—1st Space Exploration Conference: Continuing the Voyage of Discovery, Orlando, FL, USA, 30 January–1 February 2005; Volume 1, pp. 129–161. [Google Scholar] [CrossRef]
- Karafolas, N.; Sodnik, Z.; Armengol, J.M.P.; Mckenzie, I. Optical Communications in Space. In Proceedings of the 2009 International Conference on Optical Network Design and Modeling, Braunschweig, Germany, 18–20 February 2009. [Google Scholar]
- Williams, W.D.; Collins, M.; Boroson, D.M.; Lesh, J.; Biswas, A.; Orr, R.; Schuchman, L.; Sands, O.S. RF and Optical Communications: A Comparison of High Data Rate Returns From Deep Space in the 2020 Timeframe. In Proceedings of the 12th Ka and Broadband Communications Conference, Naples, Italy, 27–29 September 2006. [Google Scholar]
- Edwards, B.L.; Townes, S.A.; Bondurant, R.S.; Scozzafava, J.J.; Boroson, D.M.; Roberts, W.T.; Biswas, A.; Pillsbury, A.D.; Khatri, F.I.; Burnside, J.W.; et al. Overview of the mars laser communications demonstraton project. In Proceedings of the AIAA Space 2003 Conference and Exposition, Long Beach, CA, USA, 23 September 2003. [Google Scholar] [CrossRef]
- Graydon, O. Conquering the final frontier. Nat. Photonics 2018, 12, 647–648. [Google Scholar] [CrossRef]
- Hemmati, H. Deep Space Optical Communications; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Lambert, S.G. Design and Analysis Study of a Spacecraft Optical Transceiver Package; Final Report—JPL Contract 957061; McDonnell Douglas Astronautics Company: St. Louis, MI, USA, 1985. [Google Scholar]
- Jeganathan, M.; Portillo, A.; Racho, C.S.; Lee, S.; Erickson, D.M.; De Pew, J.; Monacos, S.; Biswas, A. Lessons Learned from the Optical Communications Demonstrator (OCD). In Proceedings of the Free-Space Laser Communication Technologies XI, San Jose, CA, USA, 23–29 January 1999; Volume 3615, pp. 23–30. [Google Scholar] [CrossRef]
- Jeganathan, M.; Monacos, S. Performance Analysis and Electronics Packaging of the Optical Communications Demonstrator. In Proceedings of the Free-Space Laser Communication Technologies X, San Jose, CA, USA, 24–30 January 1998; Volume 3266, pp. 33–41. [Google Scholar] [CrossRef]
- Tolker-Nielsen, T.; Oppenhauser, G. In-orbit Test Result of an Operational Optical Intersatellite Link Between ARTEMIS and SPOT4, SILEX. In Proceedings of the Free-Space Laser Communication Technologies XIV, San Jose, CA, USA, 20–25 January 2002; Volume 4635, pp. 1–15. [Google Scholar] [CrossRef]
- Breidenthal, J.C.; Edwards, C.D.; Greenberg, E.; Kazz, G.J.; Noreen, G.K. End-to-end information system concept for the mars telecommunications orbiter. IEEE Aerosp. Conf. Proc. 2006, 2006. [Google Scholar] [CrossRef]
- Biswas, A.; Boroson, D.; Edwards, B. Mars laser communication demonstration: What it would have been. In Proceedings of the Free-Space Laser Communication Technologies XVIII, San Jose, CA, USA, 21–26 January 2006; Volume 6105, p. 610502. [Google Scholar] [CrossRef]
- Biswas, A.; Piazzolla, S. Deep-Space Optical Communications Downlink Budget from Mars: System Parameters; The Interplanetary Network Progress Report 41-154; Jet Propulsion Laboratory: Pasadena, CA, USA, 2003; pp. 1–38. [Google Scholar]
- Robinson, B.S.; Boroson, D.M.; Burianek, D.A.; Murphy, D.V. Overview of the lunar laser communications demonstration. In Proceedings of the Free-Space Laser Communication Technologies XXIII, San Francisco, CA, USA, 22–27 January 2011; Volume 7923, p. 792302. [Google Scholar] [CrossRef]
- Boroson, D.M.; Robinson, B.S.; Murphy, D.V.; Burianek, D.A.; Khatri, F.; Kovalik, J.M.; Sodnik, Z.; Cornwell, D.M. Overview and results of the Lunar Laser Communication Demonstration. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVI, San Francisco, CA, USA, 1–6 February 2014; Volume 8971, p. 89710. [Google Scholar] [CrossRef]
- Biswas, A.; Kovalik, J.M.; Wright, M.W.; Roberts, W.T.; Cheng, M.K.; Quirk, K.J.; Srinivasan, M.; Shaw, M.D.; Birnbaum, K.M. LLCD operations using the Optical Communications Telescope Laboratory (OCTL). In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVI, San Francisco, CA, USA, 1–6 February 2014; Volume 8971, p. 89710. [Google Scholar] [CrossRef]
- Dailey, J.; Dinu, M.; Prego, R.; Kolchmeyer, J.; Berry, M.; Monte, A.; Engelberth, J.; Maliakal, A.; Piccirilli, A.; LeGrange, J.; et al. High output power laser transmitter for high-efficiency deep-space optical communications. Proc. SPIE 2019, 10910. [Google Scholar] [CrossRef]
- Hart, W.; Brown, G.M.; Collins, S.M.; De Soria-Santacruz Pich, M.; Fieseler, P.; Goebel, D.; Marsh, D.; Oh, D.Y.; Snyder, S.; Warner, N.; et al. Overview of the spacecraft design for the Psyche mission concept. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–20. [Google Scholar] [CrossRef]
- Narasimha, A.; Analui, B.; Balmater, E.; Clark, A.; Gal, T.; Guckenberger, D.; Gutierrez, S.; Harrison, M.; Ingram, R.; Koumans, R.; et al. A 40-Gb/s QSFP optoelectronic transceiver in a 0. In 13 m CMOS silicon-on-insulator technology. In Proceedings of the OFC/NFOEC 2008—2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, San Diego, CA, USA, 24–28 February 2008; pp. 10–12. [Google Scholar] [CrossRef]
- Thomson, D.J.; Gardes, F.Y.; Liu, S.; Porte, H.; Zimmermann, L.; Fedeli, J.M.; Hu, Y.; Nedeljkovic, M.; Yang, X.; Petropoulos, P.; et al. High performance mach-zehnder-based silicon optical modulators. IEEE J. Sel. Top. Quantum Electron. 2013, 19. [Google Scholar] [CrossRef] [Green Version]
- Dong, P.; Qian, W.; Liang, H.; Shafiiha, R.; Feng, D.; Li, G.; Cunningham, J.E.; Krishnamoorthy, A.V.; Asghari, M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt. Express 2010, 18, 20298–20304. [Google Scholar] [CrossRef]
- Petousi, D.; Rito, P.; Lischke, S.; Knoll, D.; Garcia-Lopez, I.; Kroh, M.; Barth, R.; Mai, C.; Ulusoy, A.C.; Peczek, A.; et al. Monolithically Integrated High-Extinction-Ratio MZM with a Segmented Driver in Photonic BiCMOS. IEEE Photonics Technol. Lett. 2016, 28, 2866–2869. [Google Scholar] [CrossRef]
- Streshinsky, M.; Ding, R.; Liu, Y.; Novack, A.; Yang, Y.; Ma, Y.; Tu, X.; Chee, E.K.S.; Lim, A.E.J.; Lo, P.G.Q.; et al. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm. Opt. Express 2013, 21, 30350–30357. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Painter, O.J.; Agrawal, G.P. Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Opt. Express 2007, 15, 16604–16644. [Google Scholar] [CrossRef] [Green Version]
- Shekhar, S.; Walling, J.S.; Allstot, D.J. Bandwidth Extension Techniques for CMOS Amplifiers. IEEE J. Solid-State Circuits 2006, 41, 2424–2439. [Google Scholar] [CrossRef]
- Bottenfield, C.G.; Ralph, S.E. High-Performance Fully Integrated Silicon Photonic Microwave Mixer Subsystems. J. Light. Technol. 2020, 38, 5536–5545. [Google Scholar] [CrossRef]
- Yao, J. Microwave Photonics. J. Light. Technol. 2009, 27, 314–335. [Google Scholar] [CrossRef]
- Huang, L.; Li, R.; Chen, D.; Xiang, P.; Wang, P.; Pu, T.; Chen, X. Photonic Downconversion of RF Signals With Improved Conversion Efficiency and SFDR. IEEE Photonics Technol. Lett. 2016, 28, 880–883. [Google Scholar] [CrossRef]
- Lei, M.; Zheng, Z.; Qian, J.; Gao, X.; Huang, S. All-Optical Microwave I/Q Mixer Based on Cascaded Phase Modulator and Dual-Drive Mach-Zehnder Modulator. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Porzi, C.; Serafino, G.; Sans, M.; Falconi, F.; Sorianello, V.; Pinna, S.; Mitchell, J.E.; Romagnoli, M.; Bogoni, A.; Ghelfi, P. Photonic Integrated Microwave Phase Shifter up to the mm-Wave Band With Fast Response Time in Silicon-on-Insulator Technology. J. Light. Technol. 2018, 36, 4494–4500. [Google Scholar] [CrossRef]
- Abiri, B.; Ives, C.; Hajimiri, A. A Photodetector-Driven Coherent RF Array with Wide Tuning Range. In Proceedings of the 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 May 2019; pp. 1–2. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.M.; Sinsky, J.H.; Dong, P.; de Valicourt, G.; Chen, Y.K. High-power dual-fed traveling wave photodetector circuits in silicon photonics. Opt. Express 2015, 23, 22857–22866. [Google Scholar] [CrossRef] [PubMed]
- Yodprasit, U.; Kroh, M.; Simon, S.; Mausolf, T.; Winkler, W. A Fully-Integrated 60-GHz Voltage-Controlled Oscillator Synchronized by Optoelectronic Signal. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 9–12 December 2018; pp. 173–176. [Google Scholar] [CrossRef]
- Zeinolabedinzadeh, S.; Goley, P.; Frounchi, M.; Rao, S.; Bottenfield, C.G.; Saha, G.; Stark, A.; Ralph, S.E.; Kaynak, M.; Zimmermann, L.; et al. A Co-Integrated Silicon-Based Electronic-Photonic Wideband, High-Power Signal Source. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Hosseinzadeh, N.; Jain, A.; Ning, K.; Helkey, R.; Buckwalter, J.F. A 0. In 5–20 GHz RF Silicon Photonic Receiver with 120 dB•Hz2/3 SFDR using Broadband Distributed IM3 Injection Linearization. In Proceedings of the 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2–4 June 2019; pp. 99–102. [Google Scholar] [CrossRef]
- Xapsos, M. A brief history of space climatology: From the big bang to the present. IEEE Trans. Nucl. Sci. 2019, 66, 17–37. [Google Scholar] [CrossRef]
- Barth, J.L. Space and atmospheric environments: From low earth orbits to deep space. In Protection of Materials and Structures from Space Environment; Springer: Dordrecht, The Netherlands, 2004; pp. 7–29. [Google Scholar] [CrossRef] [Green Version]
- Roussos, E.; Kollmann, P.; Krupp, N.; Kotova, A.; Regoli, L.; Paranicas, C.; Mitchell, D.G.; Krimigis, S.M.; Hamilton, D.; Brandt, P.; et al. A radiation belt of energetic protons located between Saturn and its rings. Science 2018, 362. [Google Scholar] [CrossRef] [Green Version]
- Xapsos, M.A.; Neill, P.M.; Brien, T.P. Near-earth space radiation models. IEEE Trans. Nucl. Sci. 2013, 60, 1691–1705. [Google Scholar] [CrossRef] [Green Version]
- Mewaldt, R.A. Galactic cosmic ray composition and energy spectra. Adv. Space Res. 1994, 14, 737–747. [Google Scholar] [CrossRef]
- Barth, J.L.; Member, S.; Dyer, C.S.; Stassinopoulos, E.G. Space, Atmospheric, and Terrestrial Radiation Environments. IEEE Trans. Nucl. Sci. 2003, 50, 466–482. [Google Scholar] [CrossRef] [Green Version]
- Cressler, J.D. Radiation effects in SiGe technology. IEEE Trans. Nucl. Sci. 2013, 60, 1992–2014. [Google Scholar] [CrossRef]
- Srour, J.R.; Marshall, C.J.; Marshall, P.W. Review of displacement damage effects in silicon devices. IEEE Trans. Nucl. Sci. 2003, 50, 653–670. [Google Scholar] [CrossRef] [Green Version]
- Daly, E.J.; Hilgers, A.; Drolshagen, G.; Evans, H.D.R. Space Environment Analysis: Experience and Trends. In Proceedings of the ESA Symposium on Environment Modeling for Space-Based Applications, Noordwijk, The Netherlands, 8–20 September 1996; pp. 15–22. [Google Scholar]
- Nybakken, R. The Juno mission to Jupiter—A pre-launch update. IEEE Aerosp. Conf. Proc. 2011, 1–8. [Google Scholar] [CrossRef]
- Lindström, G. Radiation damage in silicon detectors. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2003, 512, 30–43. [Google Scholar] [CrossRef]
- Huhtinen, M. Simulation of non-ionising energy loss and defect formation in silicon. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2002, 491, 194–215. [Google Scholar] [CrossRef]
- Tylka, A.J.; Adams, J.H.; Boberg, P.R.; Brownstein, B.; Dietrich, W.F.; Flueckiger, E.O.; Petersen, E.L.; Shea, M.A.; Smart, D.F.; Smith, E.C. CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code. IEEE Trans. Nucl. Sci. 1997, 44, 2150–2160. [Google Scholar] [CrossRef]
- Lischke, S.; Knoll, D.; Mai, C.; Zimmermann, L.; Peczek, A.; Kroh, M.; Trusch, A.; Krune, E.; Voigt, K.; Mai, A. High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Opt. Express 2015, 23, 27213. [Google Scholar] [CrossRef]
- Lee, J.M.; Kim, M.; Lischke, S.; Zimmernman, L.; Cho, S.H.; Choi, W.Y. Photodetection frequency response characterization for high-speed Ge-PD on Si with an equivalent circuit. In Proceedings of the 2016 21st OptoElectronics and Communications Conference, OECC 2016—Held Jointly with 2016 International Conference on Photonics in Switching, PS 2016, Niigata, Japan, 3–7 July 2016; Volume 2, pp. 2–4. [Google Scholar]
- Ayala, J.; Bell, J.; Nummy, K.; Guan, F.; Hu, S. Integrating a high performance Germanium photodiode into a CMOS compatible flow for a full monolithic Silicon Photonics solution. In Proceedings of the ASMC (Advanced Semiconductor Manufacturing Conference) Proceedings, Saratoga Springs, NY, USA, 6–9 May 2019; pp. 2019–2022. [Google Scholar] [CrossRef]
- Michel, J.; Liu, J.; Kimerling, L.C. High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Goley, P.S.; Tzintzarov, G.N.; Zeinolabedinzadeh, S.; Ildefonso, A.; Motoki, K.; Jiang, R.; Zhang, E.X.; Fleetwood, D.M.; Zimmermann, L.; Kaynak, M.; et al. Total ionizing dose effects in 70-GHz bandwidth photodiodes in a SiGe integrated photonics platform. IEEE Trans. Nucl. Sci. 2019, 66, 125–133. [Google Scholar] [CrossRef]
- Zeiler, M.; Nasr-Storey, S.S.E.; Detraz, S.; Kraxner, A.; Olantera, L.; Scarcella, C.; Sigaud, C.; Soos, C.; Troska, J.; Vasey, F. Radiation Damage in Silicon Photonic Mach-Zehnder Modulators and Photodiodes. IEEE Trans. Nucl. Sci. 2017, 64, 2794–2801. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, G.B.; Gehl, M.; Martinez, N.J.; Trotter, D.C.; Starbuck, A.L.; Pomerene, A.; Dallo, C.M.; Hood, D.; Dodd, P.E.; Swanson, S.E.; et al. The effect of gamma radiation exposure on active silicon photonic device performance metrics. IEEE Trans. Nucl. Sci. 2019, 66, 801–809. [Google Scholar] [CrossRef]
- Goley, P.S.; Dodds, N.A.; Frounchi, M.; Tzintzarov, G.N.; Nowlin, R.N.; Cressler, J.D. Response of Waveguide-Integrated Germanium-on-Silicon p-i-n Photodiodes to Neutron Displacement Damage. IEEE Trans. Nucl. Sci. 2020, 67, 296–304. [Google Scholar] [CrossRef]
- Ryder, L.D.; Member, S.; Ryder, K.L.; Member, S.; Sternberg, A.L.; Kozub, J.A.; Zhang, E.X.; Member, S.; Linten, D.; Croes, K.; et al. Single Event Transient Response of Vertical and Lateral Waveguide-Integrated Germanium Photodiodes. IEEE Trans. Nucl. Sci. 2021. [Google Scholar] [CrossRef]
- McMorrow, D.; Melinger, J.S.; Buchner, S. Application of a pulsed laser for evaluation and optimization of seu-hard designs. IEEE Trans. Nucl. Sci. 2000, 47, 559–565. [Google Scholar] [CrossRef]
- Moss, S.C.; LaLumondiere, S.D.; Scarpulla, J.R.; MacWilliams, K.P.; Crain, W.R.; Koga, R. Correlation of Picosecond Laser-Induced Latchup and Energetic Particle-Induced Latchup in CMOS Test Structures. IEEE Trans. Nucl. Sci. 1995, 42, 1948–1956. [Google Scholar] [CrossRef]
- Miller, F.; Buard, N.; Carrière, T.; Dufayel, R.; Gaillard, R.; Poirot, P.; Palau, J.M.; Sagnes, B.; Fouillat, P. Effects of beam spot size on the correlation between laser and heavy ion SEU testing. IEEE Trans. Nucl. Sci. 2004, 51, 3708–3715. [Google Scholar] [CrossRef]
- Zanchi, A.; Buchner, S.; Lotfi, Y.; Hisano, S.; Hafer, C.; Kerwin, D.B. Correlation of pulsed-laser energy and heavy-ion LET by matching analog SET ensemble signatures and digital SET thresholds. IEEE Trans. Nucl. Sci. 2013, 60, 4412–4420. [Google Scholar] [CrossRef]
- McMorrow, D.; Lotshaw, W.T.; Melinger, J.S.; Buchner, S.; Pease, R.L. Subbandgap laser-induced single event effects: Carrier generation via two-photon absorption. IEEE Trans. Nucl. Sci. 2002, 49, 3002–3008. [Google Scholar] [CrossRef]
- Hales, J.M.; Khachatrian, A.; Buchner, S.; Roche, N.J.; Warner, J.; McMorrow, D. A simplified approach for predicting pulsed-laser-induced carrier generation in semiconductor. IEEE Trans. Nucl. Sci. 2017, 64, 1006–1013. [Google Scholar] [CrossRef]
- Hales, J.M.; Khachatrian, A.; Buchner, S.; Roche, N.J.; Warner, J.; Fleetwood, Z.E.; Ildefonso, A.; Cressler, J.D.; Ferlet-Cavrois, V.; McMorrow, D. Experimental validation of an equivalent LET approach for correlating heavy-ion and laser-induced charge deposition. IEEE Trans. Nucl. Sci. 2018, 65, 1724–1733. [Google Scholar] [CrossRef]
- Ildefonso, A.; Fleetwood, Z.E.; Tzintzarov, G.N.; Hales, J.M.; Nergui, D.; Frounchi, M.; Khachatrian, A.; Buchner, S.P.; McMorrow, D.; Warner, J.H.; et al. Optimizing Optical Parameters to Facilitate Correlation of Laser-and Heavy-Ion-Induced Single-Event Transients in SiGe HBTs. IEEE Trans. Nucl. Sci. 2019, 66, 359–367. [Google Scholar] [CrossRef]
- Pathak, S. Photonic Integrated Circuits; Elsevier Inc.: Cambridge, MA, USA, 1990; pp. 178–179. [Google Scholar] [CrossRef]
- Tzintzarov, G.N.; Ildefonso, A.; Teng, J.W.; Frounchi, M.; Djikeng, A.; Iyengar, P.; Goley, P.S.; Khachatrian, A.; Hales, J.; Bahr, R.; et al. Optical Single-Event Transients Induced in Integrated Silicon-Photonic Waveguides by Two-Photon Absorption. IEEE Trans. Nucl. Sci. 2021, 1–8. [Google Scholar] [CrossRef]
- Johnston, A.H.; Swimm, R.T.; Thorbourn, D.O.; Adell, P.C.; Rax, B.G. Field dependence of charge yield in silicon dioxide. IEEE Trans. Nucl. Sci. 2014, 61, 2818–2825. [Google Scholar] [CrossRef]
- Ahmed, Z.; Cumberland, L.T.; Klimov, N.N.; Pazos, I.M.; Tosh, R.E.; Fitzgerald, R. Assessing Radiation Hardness of Silicon Photonic Sensors. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Boynton, N.; Gehl, M.; Dallo, C.; Pomerene, A.; Starbuck, A.; Hood, D.; Dodd, P.; Swanson, S.; Trotter, D.; DeRose, C.; et al. Gamma radiation effects on passive silicon photonic waveguides using phase sensitive methods. Optics Express 2020, 28, 35192–35201. [Google Scholar] [CrossRef] [PubMed]
- Goley, P.S.; Fleetwood, Z.E.; Cressler, J.D.; Member, S.; Fleetwood, Z.E.; Member, S.; Cressler, J.D. Potential Limitations on Integrated Silicon Photonic Waveguides Operating in a Heavy Ion Environment. IEEE Trans. Nucl. Sci. 2018, 65, 141–148. [Google Scholar] [CrossRef]
- Goley, P.S.; Cressler, J.D. Silicon-Based Electronic-Photonic Integrated Circuits: Resiliency in the Space Environment. In Proceedings of the 2019 GOMAC-Tech—Government Microcircuit Applications and Critical Technology Conference, Albuquerque, NM, USA, 25–28 March 2019; pp. 223–227. [Google Scholar]
- Soref, R.A.; Bennett, B.R. Electro-optical effects in ferroelectrics. Ferroelectrics 1987, 74, 305–307. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Seif El Nasr-Storey, S.; Boeuf, F.; Baudot, C.; Detraz, S.; Fedeli, J.M.; Marris-Morini, D.; Olantera, L.; Pezzullo, G.; Sigaud, C.; Soos, C.; et al. Effect of radiation on a Mach-Zehnder interferometer silicon modulator for HL-LHC data transmission applications. IEEE Trans. Nucl. Sci. 2015, 62, 329–335. [Google Scholar] [CrossRef]
- Seif El Nasr-Storey, S.; Boeuf, F.; Baudot, C.; Detraz, S.; Fedeli, J.M.; Marris-Morini, D.; Olantera, L.; Pezzullo, G.; Sigaud, C.; Soos, C.; et al. Modeling TID Effects in Mach-Zehnder Interferometer Silicon Modulator for HL-LHC Data Transmission Applications. IEEE Trans. Nucl. Sci. 2015, 62, 2971–2978. [Google Scholar] [CrossRef]
- Zeiler, M.; Detraz, S.; Olantera, L.; Pezzullo, G.; El Nasr-Storey, S.S.; Sigaud, C.; Soos, C.; Troska, J.; Vasey, F. Design of Si-photonic structures to evaluate their radiation hardness dependence on design parameters. J. Instrum. 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Tzintzarov, G.N.; Ildefonso, A.; Goley, P.S.; Frounchi, M.; Nergui, D.; Rao, S.G.; Teng, J.; Campbell, J.; Khachatrian, A.; Buchner, S.P.; et al. Electronic-to-Photonic Single-Event Transient Propagation in a Segmented Mach-Zehnder Modulator in a Si/SiGe Integrated Photonics Platform. IEEE Trans. Nucl. Sci. 2020, 67, 260–267. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzintzarov, G.N.; Rao, S.G.; Cressler, J.D. Integrated Silicon Photonics for Enabling Next-Generation Space Systems. Photonics 2021, 8, 131. https://doi.org/10.3390/photonics8040131
Tzintzarov GN, Rao SG, Cressler JD. Integrated Silicon Photonics for Enabling Next-Generation Space Systems. Photonics. 2021; 8(4):131. https://doi.org/10.3390/photonics8040131
Chicago/Turabian StyleTzintzarov, George N., Sunil G. Rao, and John D. Cressler. 2021. "Integrated Silicon Photonics for Enabling Next-Generation Space Systems" Photonics 8, no. 4: 131. https://doi.org/10.3390/photonics8040131
APA StyleTzintzarov, G. N., Rao, S. G., & Cressler, J. D. (2021). Integrated Silicon Photonics for Enabling Next-Generation Space Systems. Photonics, 8(4), 131. https://doi.org/10.3390/photonics8040131