Plasmonic Enhanced InP Nanowire Array Solar Cell through Optoelectronic Modeling
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mauthe, S.; Baumgartner, Y.; Sousa, M.; Ding, Q.; Rossell, M.D.; Schenk, A.; Czornomaz, L.; Moselund, K.E. High-speed III-V nanowire photodetector monolithically integrated on Si. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Shen, L.; Pun, E.Y.; Ho, J.C. Recent developments in III–V semiconducting nanowires for high-performance photodetectors. Mater. Chem. Front. 2017, 1, 630–645. [Google Scholar] [CrossRef]
- Ren, D.; Azizur-Rahman, K.M.; Rong, Z.; Juang, B.-C.; Somasundaram, S.; Shahili, M.; Farrell, A.C.; Williams, B.S.; Huffaker, D.L. Room-temperature midwavelength infrared InAsSb nanowire photodetector arrays with Al2O3 passivation. Nano Lett. 2019, 19, 2793–2802. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.; Yazdi, S.; Nowzari, A.; Storm, K.; Jain, V.; Vainorius, N.; Samuelson, L.; Wagner, J.B.; Borgström, M.T. Radial Nanowire Light-Emitting Diodes in the (AlxGa1–x)yIn1–yP Material System. Nano Lett. 2016, 16, 656–662. [Google Scholar] [CrossRef] [Green Version]
- Gagliano, L.; Kruijsse, M.; Schefold, J.D.; Belabbes, A.; Verheijen, M.A.; Meuret, S.; Koelling, S.; Polman, A.; Bechstedt, F.; Haverkort, J.E. Efficient Green Emission from Wurtzite Al x In1–x P Nanowires. Nano Lett. 2018, 18, 3543–3549. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.Q.T.; Velpula, R.T.; Jain, B.; Aref, O.H.; Nguyen, H.-D.; Lenka, T.R.; Nguyen, H.P.T. Full-color InGaN/AlGaN nanowire micro light-emitting diodes grown by molecular beam epitaxy: A promising candidate for next generation micro displays. Micromachines 2019, 10, 492. [Google Scholar] [CrossRef] [Green Version]
- Kim, H. III-V Semiconductor Nanowire Lasers on Silicon; UCLA: Los Angeles, CA, USA, 2018. [Google Scholar]
- Zhang, G.; Takiguchi, M.; Tateno, K.; Tawara, T.; Notomi, M.; Gotoh, H. Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature. Sci. Adv. 2019, 5, eaat8896. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Murai, S.; Zhang, F.; Tamura, S.; Tomita, K.; Tanaka, K. Enhancing upconversion photoluminescence by plasmonic-photonic hybrid mode. Opt. Express 2020, 28, 886–897. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Shabat, M.M.; Schaadt, D.M. Wide angle antireflection in metal nanoparticles embedded in a dielectric matrix for plasmonic solar cells. Prog. Photovolt. Res. Appl. 2020, 28, 682–690. [Google Scholar] [CrossRef]
- Samajdar, D. Performance enhancement of Nanopyramid based Si hybrid solar cells utilizing the plasmonic properties of oxide coated Metal Nanoparticles. Opt. Mater. 2020, 107, 110166. [Google Scholar]
- Ghahremanirad, E.; Olyaee, S.; Hedayati, M. The Influence of Embedded Plasmonic Nanostructures on the Optical Absorption of Perovskite Solar Cells. Photonics 2019, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Chen, S.; Zhang, J.; Yao, X.; Zhong, J.; Lin, H.; Huang, T.; Yang, Z.; Zhu, J.; Liu, S. A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm. Adv. Mater. 2018, 30, 1706031. [Google Scholar] [CrossRef]
- Pathak, N.K.; Chander, N.; Komarala, V.K.; Sharma, R. Plasmonic perovskite solar cells utilizing Au@SiO 2 core-shell nanoparticles. Plasmonics 2017, 12, 237–244. [Google Scholar] [CrossRef]
- Jangjoy, A.; Bahador, H.; Heidarzadeh, H. A Comparative Study of a Novel Anti-reflective Layer to Improve the Performance of a Thin-Film GaAs Solar Cell by Embedding Plasmonic Nanoparticles. Plasmonics 2021, 16, 395–401. [Google Scholar] [CrossRef]
- Ferry, V.E.; Verschuuren, M.A.; Lare, M.C.v.; Schropp, R.E.; Atwater, H.A.; Polman, A. Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si: H solar cells. Nano Lett. 2011, 11, 4239–4245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deka, N.; Islam, M.; Sarswat, P.K.; Kumar, G. Enhancing solar cell efficiency with plasmonic behavior of double metal nanoparticle system. Vacuum 2018, 152, 285–290. [Google Scholar] [CrossRef]
- Diukman, I.; Orenstein, M. How front side plasmonic nanostructures enhance solar cell efficiency. Sol. Energy Mater. Sol. Cells 2011, 95, 2628–2631. [Google Scholar] [CrossRef]
- Cao, S.; Yu, D.; Lin, Y.; Zhang, C.; Lu, L.; Yin, M.; Zhu, X.; Chen, X.; Li, D. Light Propagation in Flexible Thin-film Amorphous Silicon Solar Cells with Nanotextured Metal Back Reflectors. ACS Appl. Mater. Interfaces 2020, 12, 26184–26192. [Google Scholar] [CrossRef]
- Sun, T.; Shi, H.; Cao, L.; Liu, Y.; Tu, J.; Lu, M.; Li, H.; Zhao, W.; Li, Q.; Fu, T. Double grating high efficiency nanostructured silicon-based ultra-thin solar cells. Results Phys. 2020, 19, 103442. [Google Scholar] [CrossRef]
- Hungerford, C.D.; Fauchet, P.M. Design of a plasmonic back reflector using Ag nanoparticles with a mirror support for an a-Si: H solar cell. AIP Adv. 2017, 7, 75004. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Zhang, R.; Liu, Y.; Chen, X.; Li, K.; Pickwell-Macpherson, E. Gold nanoparticle enhanced detection of EGFR with a terahertz metamaterial biosensor. Biomed. Opt. Express 2021, 12, 1559–1567. [Google Scholar] [CrossRef]
- Devine, E.P. Mid-infrared photodetector based on 2D material metamaterial with negative index properties for a wide range of angles near vertical illumination. Appl. Phys. A 2021, 127, 1–5. [Google Scholar]
- Jiang, X.; Wang, T.; Zhong, Q.; Yan, R.; Huang, X. A near-ideal solar selective absorber with strong broadband optical absorption from UV to NIR. Nanotechnology 2020, 31, 315202. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, T.; Zhong, Q.; Yan, R.; Huang, X. Ultrabroadband light absorption based on photonic topological transitions in hyperbolic metamaterials. Opt. Express 2020, 28, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Lee, G.J.; Song, Y.M. Recent Advances in Vertically Aligned Nanowires for Photonics Applications. Micromachines 2020, 11, 726. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Lieber, C.M. Semiconductor nanowires. J. Phys. D Appl. Phys. 2006, 39, R387. [Google Scholar] [CrossRef] [Green Version]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998; Volume 3. [Google Scholar]
- Darling, R.B. Defect-state occupation, Fermi-level pinning, and illumination effects on free semiconductor surfaces. Phys. Rev. 1991, 43, 4071. [Google Scholar] [CrossRef]
- Adibzadeh, F.; Olyaee, S. Performance improvement of InP nanowire array solar cells by decorated nanowires and using back reflector. Opt. Mater. 2020, 109, 110397. [Google Scholar] [CrossRef]
- Rosenwaks, Y.; Shapira, Y.; Huppert, D. Metal reactivity effects on the surface recombination velocity at InP interfaces. Appl. Phys. Lett. 1990, 57, 2552–2554. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.Á.; Ram-Mohan, L.Á. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef] [Green Version]
- Shur, M.S. Handbook Series on Semiconductor Parameters; World Scientific: Singapore, 1996; Volume 1. [Google Scholar]
- Anttu, N.; Xu, H. Efficient light management in vertical nanowire arrays for photovoltaics. Opt. Express 2013, 21, A558–A575. [Google Scholar] [CrossRef]
- Aghaeipour, M.; Anttu, N.; Nylund, G.; Samuelson, L.; Lehmann, S.; Pistol, M.-E. Tunable absorption resonances in the ultraviolet for InP nanowire arrays. Opt. Express 2014, 22, 29204–29212. [Google Scholar] [CrossRef] [PubMed]
- Diedenhofen, S.L.; Janssen, O.T.; Grzela, G.; Bakkers, E.P.; Gómez Rivas, J. Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires. ACS Nano 2011, 5, 2316–2323. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Wober, M.; Steinvurzel, P.; Schonbrun, E.; Dan, Y.; Ellenbogen, T.; Crozier, K.B. Multicolored vertical silicon nanowires. Nano Lett. 2011, 11, 1851–1856. [Google Scholar] [CrossRef]
- Li, J.; Yu, H.; Li, Y. Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics. Nanotechnology 2012, 23, 194010. [Google Scholar] [CrossRef] [PubMed]
- Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M.H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B.; et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Leu, P.W. Tunable and selective resonant absorption in vertical nanowires. Opt. Lett. 2012, 37, 3756–3758. [Google Scholar] [CrossRef]
- Anttu, N. Physics and design for 20% and 25% efficiency nanowire array solar cells. Nanotechnology 2018, 30, 074002. [Google Scholar] [CrossRef] [Green Version]
Parameters | InP |
---|---|
Dielectric constant (εr) | 12.5 |
SRH recombination coefficient (A) | |
Auger recombination coefficient (C) | |
Electron mobility () | 5400 |
Hole mobility () | 250 |
Band gap | 1.34 eV |
Structure | Voc (Volt) | Jsc (mA/cm2) | FF (%) | Efficiency (%) | Jsc Enhancement (%) |
---|---|---|---|---|---|
Ohmic Contacts | |||||
Bare cell | 0.958 | 24.1 | 63.67 | 14.7 | ---------- |
Proposed cell | 0.963 | 27.64 | 63.87 | 17 | 14.69 |
Perfect Carrier Selective Contacts | |||||
Bare cell | 1.015 | 24.71 | 66.03 | 16.56 | ---------- |
Proposed cell | 1.02 | 28.2 | 67.97 | 19.55 | 14.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adibzadeh, F.; Olyaee, S. Plasmonic Enhanced InP Nanowire Array Solar Cell through Optoelectronic Modeling. Photonics 2021, 8, 90. https://doi.org/10.3390/photonics8040090
Adibzadeh F, Olyaee S. Plasmonic Enhanced InP Nanowire Array Solar Cell through Optoelectronic Modeling. Photonics. 2021; 8(4):90. https://doi.org/10.3390/photonics8040090
Chicago/Turabian StyleAdibzadeh, Farzaneh, and Saeed Olyaee. 2021. "Plasmonic Enhanced InP Nanowire Array Solar Cell through Optoelectronic Modeling" Photonics 8, no. 4: 90. https://doi.org/10.3390/photonics8040090
APA StyleAdibzadeh, F., & Olyaee, S. (2021). Plasmonic Enhanced InP Nanowire Array Solar Cell through Optoelectronic Modeling. Photonics, 8(4), 90. https://doi.org/10.3390/photonics8040090