Characteristics of Nonstatic Quantum Light Waves: The Principle for Wave Expansion and Collapse
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fundamental Properties of Nonstatic Light Waves
2.1.1. Measure of Nonstaticity
2.1.2. Nonstatic Waves Associated with Dissipation and Amplification
Dissipative Quantum Light Waves
Amplifying Quantum Light Waves
2.2. Interpreting Periodic Nonstatic Wave Behavior
2.3. Analysis of Generalized Nonstatic Waves
3. Conclusions
4. Methods
4.1. Methods Summary
4.2. Standard Quantum Description of the Damped Waves
4.3. Standard Quantum Waves That Undergo Amplification
4.4. Quantum Waves That Exhibit Periodical Collapse and Expansion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RMS | Root-Mean-Square |
SHO | Simple Harmonic Oscillator |
S (subscript) | Simple-harmonic-oscillator wave functions () measure of nonstaticity for Simple-harmonic-oscillator wave functions () |
D (subscript) | Damped-harmonic-oscillator wave functions () modified angular frequency of the Damped harmonic oscillator () measure of nonstaticity for Damped-harmonic-oscillator wave functions () |
A (subscript) | Amplified-harmonic-oscillator wave functions () modified angular frequency of the Amplified harmonic oscillator () measure of nonstaticity for Amplified-harmonic-oscillator wave functions () |
GS (subscript) | Generalized Simple-harmonic-oscillator wave functions () measure of nonstaticity for Generalized Simple-harmonic-oscillator wave functions () |
GD (subscript) | Generalized Damped-harmonic-oscillator wave functions () measure of nonstaticity for Generalized Damped-harmonic-oscillator wave functions () |
GA (subscript) | Generalized Amplified-harmonic-oscillator wave functions () |
References
- Kunz, K.S. Propagation of an Electromagnetic Wave in a Time-Varying Medium, Part I, General Theory; Sandia Corporation: Albuquerque, NM, USA, 1964. [Google Scholar]
- Akhmanov, S.A.; Sukhorukov, A.P.; Chirkin, A.S. Nonstationary phenomena and space-time analogy in nonlinear optics. Sov. Phys. JETP 1969, 28, 748–757. [Google Scholar]
- Dodonov, V.V.; Klimov, A.B.; Nikonov, D.E. Quantum phenomena in nonstationary media. Phys. Rev. A 1993, 47, 4422–4429. [Google Scholar] [CrossRef] [PubMed]
- Shvartsburg, A.B. Optics of nonstationary media. Phys. Usp. 2005, 48, 797–823. [Google Scholar] [CrossRef]
- Trofimov, V.A.; Lysak, T.M.; Loginova, M.M. Laser pulse self-similar propagation in a medium with noble metal nanoparticles under conditions of non-stationary processes. In Nanoengineering: Fabrication, Properties, Optics, and Devices XV (Vol. 10730, p. 1073014); International Society for Optics and Photonics: San Diego, CA, USA, 2018. [Google Scholar]
- Shvartsburg, A.B.; Petite, G. Instantaneous optics of ultrashort broadband pulses and rapidly varying media. Prog. Opt. 2002, 44, 143–214. [Google Scholar]
- Shah, S.M.; Samar, R.; Raja, M.A.Z. Fractional-order algorithms for tracking Rayleigh fading channels. Nonlinear Dyn. 2018, 92, 1243–1259. [Google Scholar] [CrossRef]
- Wu, J. Riemann-Hilbert approach of the Newell-type long-wave–short-wave equation via the temporal-part spectral analysis. Nonlinear Dyn. 2019, 98, 749–760. [Google Scholar] [CrossRef]
- Choi, J.R. The decay properties of a single-photon in linear media. Chin. J. Phys. 2003, 41, 257–266. [Google Scholar]
- Habibi, M.; Ghamari, F. Investigation of non-stationary self-focusing of intense laser pulse in cold quantum plasma using ramp density profile. Phys. Plasmas 2012, 19, 113109. [Google Scholar] [CrossRef]
- Zhaqilao. Nonlinear dynamics of higher-order rogue waves in a novel complex nonlinear wave equation. Nonlinear Dyn. 2020, 99, 2945–2960. [Google Scholar] [CrossRef]
- Choi, J.R. On the possible emergence of nonstatic quantum waves in a static environment. Nonlinear Dyn. 2021, 103, 2783–2792. [Google Scholar] [CrossRef]
- Xu, G.; Vocke, D.; Faccio, D.; Garnier, J.; Roger, T.; Trillo, S.; Picozzi, A. From coherent shocklets to giant collective incoherent shock waves in nonlocal turbulent flows. Nat. Commun. 2015, 6, 8131. [Google Scholar] [CrossRef] [Green Version]
- Wolff, C.; Stiller, B.; Eggleton, B.J.; Steel, M.J.; Poulton, C.G. Cascaded forward Brillouin scattering to all Stokes orders. New J. Phys. 2017, 19, 023021. [Google Scholar] [CrossRef] [Green Version]
- Keller, O. Quantum Theory of Near-Field Electrodynamics; Part of the Nano-Optics and Nanophotonics Book Series; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Girard, C. Near fields in nanostructures. Rep. Prog. Phys. 2005, 68, 1883–1933. [Google Scholar] [CrossRef]
- Gong, T.; Corrado, M.R.; Mahbub, A.R.; Shelden, C.; Munday, J.N. Recent progress in engineering the Casimir effect–Applications to nanophotonics, nanomechanics, and chemistry. Nanophotonics 2021, 10, 523–536. [Google Scholar] [CrossRef]
- Kukhlevsky, S.V. Propagation of X-ray femtosecond pulses through tapered nanometer-scale capillary waveguides. Phys. Lett. A 2001, 291, 459–464. [Google Scholar] [CrossRef]
- Moody, G.; McDonald, C.; Feldman, A.; Harvey, T.; Mirin, R.P.; Silverman, K.L. Quadrature demodulation of a quantum dot optical response to faint light fields. Optica 2016, 3, 1397–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notomi, M.; Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 2006, 73, 051803(R). [Google Scholar] [CrossRef]
- Lähteenmäki, P.; Paraoanu, G.S.; Hassel, J.; Hakonen, P.J. Dynamical Casimir effect in a Josephson metamaterial. Proc. Natl. Acad. Sci. USA 2013, 110, 4234–4238. [Google Scholar] [CrossRef] [Green Version]
- Braunstein, S.L.; van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 2005, 77, 513–575. [Google Scholar] [CrossRef] [Green Version]
- Louisell, W.H. Quantum Statistical Properties of Radiation; John Wiley and Sons: New York, NY, USA, 1973; p. 240. [Google Scholar]
- Caldirola, P. Forze non conservative nella meccanica quantistica. Il Nuovo Cimento 1941, 18, 393–400. [Google Scholar] [CrossRef]
- Kanai, E. On the quantization of the dissipative systems. Prog. Theor. Phys. 1950, 3, 440–442. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, H.-C.; Fan, H.-Y. Fresnel operator, squeezed state and Wigner function for Caldirola-Kanai Hamiltonian. Mod. Phys. Lett. A 2011, 26, 1433–1442. [Google Scholar] [CrossRef] [Green Version]
- Ryzhii, V.; Satou, A. Electric-field breakdown of absolute negative conductivity and supersonic streams in two-dimensional electron systems with zero resistance/conductance states. J. Phys. Soc. Jpn. 2003, 72, 2718–2721. [Google Scholar] [CrossRef] [Green Version]
- Ryzhii, V.I. Microwave-induced negative conductivity and zero-resistance states in two-dimensional electronic systems: History and current status. Phys. -Usp. 2005, 48, 191–197. [Google Scholar] [CrossRef]
- Dorozhkin, S.I.; Dmitriev, I.A.; Mirlin, A.D. Negative conductivity and anomalous screening in two-dimensional electron systems subjected to microwave radiation. Phys. Rev. B 2011, 84, 125448. [Google Scholar] [CrossRef] [Green Version]
- Mollow, B.R. Power spectrum of light scattered by two-level systems. Phys. Rev. 1969, 188, 1969–1975. [Google Scholar] [CrossRef]
- Um, C.-I.; Yeon, K.-H.; George, T.F. The quantum damped harmonic oscillator. Phys. Rep. 2002, 362, 63–192. [Google Scholar] [CrossRef]
- Choi, J.R.; Zhang, S. Quantum and classical correspondence of damped-amplified oscillators. Phys. Scr. 2002, 66, 337–341. [Google Scholar] [CrossRef]
- Baldiotti, M.C.; Fresneda, R.; Gitman, D.M. Quantization of the damped harmonic oscillator revisited. Phys. Lett. A 2011, 375, 1630–1636. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.R. Emergence of classicality from initial quantum world for dissipative optical waves. Adv. Electromagn. 2016, 5, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Yeon, K.-H.; Kim, S.-S.; Moon, Y.-M.; Hong, S.-K.; Um, C.-I.; George, T.F. The quantum under-, critical- and over-damped driven harmonic oscillators. J. Phys. A Math. Gen. 2001, 34, 7719–7732. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.R. Characteristics of Nonstatic Quantum Light Waves: The Principle for Wave Expansion and Collapse. Photonics 2021, 8, 158. https://doi.org/10.3390/photonics8050158
Choi JR. Characteristics of Nonstatic Quantum Light Waves: The Principle for Wave Expansion and Collapse. Photonics. 2021; 8(5):158. https://doi.org/10.3390/photonics8050158
Chicago/Turabian StyleChoi, Jeong Ryeol. 2021. "Characteristics of Nonstatic Quantum Light Waves: The Principle for Wave Expansion and Collapse" Photonics 8, no. 5: 158. https://doi.org/10.3390/photonics8050158
APA StyleChoi, J. R. (2021). Characteristics of Nonstatic Quantum Light Waves: The Principle for Wave Expansion and Collapse. Photonics, 8(5), 158. https://doi.org/10.3390/photonics8050158