The Effect of Doping in Split-Well Direct-Phonon THz Quantum-Cascade Laser Structures
Abstract
:1. Introduction
2. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Darmo, J.; Tamosiunas, V.; Fasching, G.; Kroll, J.; Unterrainer, K.; Beck, M.; Giovannini, M.; Faist, J.; Kremser, C.; Debbage, P. Imaging with a Terahertz quantum cascade laser. Opt. Express 2004, 12, 1879–1884. [Google Scholar] [CrossRef]
- Hubers, H.W.; Pavlov, S.G.; Richter, H.; Semenov, A.D.; Mahler, L.; Tredicucci, A.; Beere, H.E.; Ritchie, D.A. High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser. Appl. Phys. Lett. 2006, 89, 061115. [Google Scholar] [CrossRef]
- Williams, B.S. Terahertz quantum-cascade lasers. Nat. Photon. 2007, 1, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Wanke, M.C. Searching for a Solid-State Terahertz Technology. Science 2007, 316, 64–65. [Google Scholar] [CrossRef]
- Walker, C.K.; Kulesa, C.; Goldsmith, P.; Groppi, C.; Helmich, F.; Hollenbach, D.; Kawamura, K.; Langer, W.; Melnick, G.; Neufeld, D.; et al. GUSTO: Gal/Xgal U/LDB spectroscopic–stratospheric TeraHertz observatory. In Proceedings of the 231st AAS Meeting, Washington, DC, USA, 8–12 January 2018; p. 231.05. [Google Scholar]
- Mittleman, D.M. Twenty years of terahertz imaging [Invited]. Opt. Express 2018, 26, 9417–9431. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Rahman, A.K.; Rao, B. Early detection of skin cancer via terahertz spectral profiling and 3D imaging. Biosens. Bioelectron. 2016, 82, 64–70. [Google Scholar] [CrossRef]
- Federici, J.F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D. THz imaging and sensing for security applications—explosives, weapons and drugs. Sci. Technol. 2005, 20, 266–280. [Google Scholar] [CrossRef]
- Korter, T.; Plusquellic, D.F. Continuous-wave terahertz spectroscopy of biotin: Vibrational anharmonicity in the far-infrared. Chem. Phys. Lett. 2004, 385, 45–51. [Google Scholar] [CrossRef]
- Ogawa, Y.; Hayashi, S.; Oikawa, M.; Otani, C.; Kawase, K. Interference terahertz label-free imaging for protein detection on a membrane. Opt. Express 2008, 16, 22083–22089. [Google Scholar] [CrossRef] [PubMed]
- Mittelstädt, A.; Ludwig, A.T.; Jagsch, S.T.; Schliwa, A. Terahertz lasing at room temperature: A numerical study of a vertical-emitting quantum cascade laser based on a quantum dot superlattice. Phys. Rev. B 2021, 103, 115301. [Google Scholar] [CrossRef]
- Kohler, R.; Tredicucci, A.; Beltram, F.; Beere, H.E.; Linfield, E.H.; Davies, A.G.; Ritchie, D.A.; Iotti, R.C.; Rossi, F. Terahertz semiconductor-heterostructure laser. Nature 2002, 417, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Bosco, L.; Franckie, M.; Scalari, G.; Beck, M.; Wacker, A.; Faist, J. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl. Phys. Lett. 2019, 115, 010601. [Google Scholar] [CrossRef]
- Khalatpour, A.; Paulsen, A.K.; Deimert, C.; Wasilewski, Z.R.; Hu, Q. High-power portable terahertz laser systems. Nat. Photon. 2020, 15, 16–20. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, F.; Wu, D.; Slivken, S.; Razeghi, M. Room temperature terahertz semiconductor frequency comb. Nat. Commun. 2019, 10, 2403. [Google Scholar] [CrossRef]
- Albo, A.; Hu, Q. Investigating temperature degradation in THz quantum cascade lasers by examination of temperature dependence of output power. Appl. Phys. Lett. 2015, 106, 131108. [Google Scholar] [CrossRef]
- Albo, A.; Hu, Q. Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers. Appl. Phys. Lett. 2015, 107, 241101. [Google Scholar] [CrossRef]
- Kumar, S.; Hu, Q.; Reno, J.L. 186 K operation of terahertz quantum-cascade lasers based on a diagonal design. Appl. Phys. Lett. 2009, 94, 131105. [Google Scholar] [CrossRef]
- Albo, A.; Hu, Q.; Reno, J.L. Room temperature negative differential resistance in terahertz quantum cascade laser structures. Appl. Phys. Lett. 2016, 109, 081102. [Google Scholar] [CrossRef]
- Flores, Y.V.; Albo, A. Impact of Interface Roughness Scattering on the Performance of GaAs/AlxGa1–xAs Terahertz Quantum Cascade Lasers. IEEE J. Quantum Electron. 2017, 53, 2300208, Erratum IEEE J. Quantum Electron. 2017, 53, 9700101. [Google Scholar] [CrossRef]
- Razavipour, S.G.; Dupont, E.; Wasilewski, Z.R.; Ban, D. Effects of interface roughness scattering on device performance of indirectly pumped terahertz quantum cascade lasers. J. Phys. Conf. Ser. 2015, 619, 012003. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, C.; Detz, H.; Zederbauer, T.; Andrews, A.M.; Klang, P.; Kubis, T.; Klimeck, G.; Schuster, M.E.; Schrenk, W.; Strasser, G.; et al. Probing scattering mechanisms with symmetric quantum cascade lasers. Opt. Express 2013, 21, 7209. [Google Scholar] [CrossRef]
- Krivas, K.A.; Winge, D.O.; Franckie, M.; Wacker, A. Influence of interface roughness in quantum cascade lasers. J. Appl. Phys. 2015, 118, 114501. [Google Scholar] [CrossRef] [Green Version]
- Franckie, M.; Franckié, M.; Winge, D.O.; Wolf, J.; Liverini, V.; Dupont, E.; Trinité, V.; Faist, J.; Wacker, A. Impact of interface roughness distributions on the operation of quantum cascade lasers. Opt. Express 2015, 23, 5201. [Google Scholar] [CrossRef]
- Yin, J.C.; Zhang, Y.; Zou, B.; Yao, Y. Robust Fano resonance in the photonic valley Hall states. Phys. Rev. 2021, A103, 023512. [Google Scholar] [CrossRef]
- Lubatsch, A.; Frank, R. A Self-Consistent Quantum Field Theory for Random Lasing. Appl. Sci. 2019, 9, 2477. [Google Scholar] [CrossRef] [Green Version]
- Lubatsch, A.; Frank, R. QuantumMany-Body Theory for Exciton-Polaritons in SemiconductorMie Resonators in the Non-Equilibrium. Appl. Sci. 2020, 10, 1836. [Google Scholar] [CrossRef] [Green Version]
- Albo, A.; Flores, Y.V.; Hu, Q.; Reno, J.L. Two-well terahertz quantum cascade lasers with suppressed carrier leakage. Appl. Phys. Lett. 2017, 111, 111107. [Google Scholar] [CrossRef]
- Albo, A.; Flores, Y.V. Temperature-Driven Enhancement of the Stimulated Emission Rate in Terahertz Quantum Cascade Lasers. IEEE J. Quantum Electron. 2017, 53, 2300105. [Google Scholar] [CrossRef]
- Franckie, M.; Bosco, L.; Beck, M.; Bonzon, C.; Mavrona, E.; Scalari, G.; Wacker, A.; Faist, J. Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling. Appl. Phys. Lett. 2018, 112, 021104. [Google Scholar] [CrossRef] [Green Version]
- Albo, A.; Flores, Y.V. Carrier Leakage Dynamics in Terahertz Quantum Cascade Lasers. IEEE J. Quantum Electron. 2017, 53, 8500508. [Google Scholar] [CrossRef]
- Chan, C.W.I.; Albo, A.; Hu, Q.; Reno, J.L. Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers. Appl. Phys. Lett. 2016, 109, 201104. [Google Scholar] [CrossRef]
- Chan, C.W.I. Towards Room-Temperature Terahertz Quantum Cascade Lasers: Directions and Design. Ph.D. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA, 2015. [Google Scholar]
- Albo, A.; Flores, Y.V.; Hu, Q.; Reno, J.L. Split-well direct-phonon terahertz quantum cascade lasers. Appl. Phys. Lett. 2019, 114, 191102. [Google Scholar] [CrossRef] [Green Version]
- Lander Gower, N.; Piperno, S.; Albo, A. The Significance of Carrier Leakage for Stable Lasing in Split-Well Direct Phonon Terahertz Quantum Cascade Lasers. Photonics 2020, 7, 59. [Google Scholar] [CrossRef]
- Lander Gower, N.; Piperno, S.; Albo, A. Self-consistent gain calculations and carrier transport analysis for split-well direct-phonon terahertz quantum cascade lasers. AIP Adv. 2020, 10, 115319. [Google Scholar] [CrossRef]
- Kazarinov, R.F.; Suris, R.A. Possible amplification of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semicond. 1971, 5, 707. [Google Scholar]
- Bhattacharya, I.; Chan, C.W.I.; Hu, Q. Effects of stimulated emission on transport in terahertz quantum cascade lasers based on diagonal designs. Appl. Phys. Lett. 2012, 100, 011108. [Google Scholar] [CrossRef]
- Sirtori, C.; Capasso, F.; Faist, J.; Hutchinson, A.L.; Sivco, D.L.; Cho, A.Y. Resonant tunneling in quantum cascade lasers. IEEE J. Quantum Electron. 1998, 34, 1722. [Google Scholar] [CrossRef]
Device | Lasing Energy [meV] | E21 [meV] | Oscillator Strength | Nom. Expected Activation Energy [meV] | E47 [meV] | Layer Sequence [#ML *] Barrier Composition and Doping Level | Process Details |
---|---|---|---|---|---|---|---|
Device 1 (VB0837) | 11.1 | 34.5 | 0.26 | 24.9 | 72.5 | 9.0/24.8/3.5/24.8/17.3/24.8 353 periods Total thickness 10 μm GaAs/mixed barriers Al0.55Ga0.45As (Inj.) and Al0.15Ga0.85As (Rad., Intraw.) 2.13 × 1016 cm−3 in the 24.8 ML wells (2.98 × 1010 cm−2) | metal–metal (100 Å Ta/2500 Å Au) Top contact n+ layer was removed, bottom contact is 50-nm-thick GaAs with doping of 5 × 1018 cm−3 Dry etched Mesa size 150 μm × 1.8 mm |
Device 2 (VB0872) | 11.1 | 34.5 | 0.26 | 24.9 | 72.5 | 9.0/24.8/3.5/24.8/17.3/24.8 353 periods Total thickness 10 μm GaAs/mixed barriers Al0.55Ga0.45As (Inj.) and Al0.15Ga0.85As (Rad., Intraw.) 4.26 × 1016 cm−3 in the 24.8 ML wells (5.96 × 1010 cm−2). | metal–metal (100 Å Ta/2500 Å Au) Top contact n+ layer was removed, bottom contact is 50-nm-thick GaAs with doping of 5 × 1018 cm−3 Dry etched Mesa size 150 μm × 1.8 mm |
Device (Wafer, Scheme) | Injection Coupling [meV] | Design Electric Field [kV/cm] | τ0ul [ps] * | τ021 [ps] ** | IFR Gain Broadening [meV] *** | Lasing Energy [meV] | Expected Activation Energy [meV] | Jth (10 K) [A/cm2] | Jmax (10 K) [A/cm2] | Dynamic Range (10 K) [A/cm2] | Jmax (290 K) [A/cm2] | Tmax [K] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Device 1 (VB0837) | 2.08 | 16.5 | 1.21 | 0.18 | 4.37 | 10.05 | 25.5 | 578 | 928 | 350 | 750 | 170 |
Device 2 (VB0872) | 2.09 | 16.8 | 1.32 | 0.18 | 4.37 | 9.5 | 26.5 | 1089 | 1118 | 29 | 840 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lander Gower, N.; Piperno, S.; Albo, A. The Effect of Doping in Split-Well Direct-Phonon THz Quantum-Cascade Laser Structures. Photonics 2021, 8, 195. https://doi.org/10.3390/photonics8060195
Lander Gower N, Piperno S, Albo A. The Effect of Doping in Split-Well Direct-Phonon THz Quantum-Cascade Laser Structures. Photonics. 2021; 8(6):195. https://doi.org/10.3390/photonics8060195
Chicago/Turabian StyleLander Gower, Nathalie, Silvia Piperno, and Asaf Albo. 2021. "The Effect of Doping in Split-Well Direct-Phonon THz Quantum-Cascade Laser Structures" Photonics 8, no. 6: 195. https://doi.org/10.3390/photonics8060195
APA StyleLander Gower, N., Piperno, S., & Albo, A. (2021). The Effect of Doping in Split-Well Direct-Phonon THz Quantum-Cascade Laser Structures. Photonics, 8(6), 195. https://doi.org/10.3390/photonics8060195