Perspectives on UVC LED: Its Progress and Application
Abstract
:1. Background
2. Working Principle and Limitations of UVC LED
2.1. Introduction to UVC LED Devices
2.2. EQE of the Chip
2.2.1. Immature Epitaxial Technology of High-Al-Content Nitride Semiconductor
2.2.2. Carrier Transport and Internal Quantum Efficiency
2.2.3. Problem of Light Extraction Efficiency
2.2.4. Improvement of Reliability through ALD Film Passivation
2.3. Packaging Material Aging Problem
2.4. Thermal Management Issues
3. Deep Ultraviolet LED Sterilization Mechanism and Application
3.1. Killing Mechanism of Deep Ultraviolet LED on Viruses and Bacteria
3.2. Deep Ultraviolet LED Disinfection Application
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pankove, J.; Duffy, M.; Miller, E.; Berkeyheiser, J. Luminescence of insulating Be-doped and Li-doped GaN. J. Lumin. 1973, 8, 89–93. [Google Scholar] [CrossRef]
- Han, J.; Crawford, M.; Shul, R.; Figiel, J.; Banas, M.; Zhang, L.; Song, Y.; Zhou, H.; Nurmikko, A. AlGaN/GaN quantum well ultraviolet light emitting diodes. Appl. Phys. Lett. 1998, 73, 1688–1690. [Google Scholar] [CrossRef]
- Lambert, J.; Shurvell, H.; Lightner, D.; Cooks, R. Organic Structural Spectroscopy; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Kneissl, M.; Rass, J. III-Nitride Ultraviolet Emitters; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- LEDinside. Deep UV LED Application Market- Sterilization, Purification, and Water Treatment Markets; LEDinside: Taipei, Taiwan, 2019. [Google Scholar]
- Hirayama, H. Growth of (In) AlGaN compound semiconductors and their application to 300-nm-band high-intensity UV-LEDs. Rev. Laser Eng. 2002, 30, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Amano, H.; Collazo, R.; De Santi, C.; Einfeldt, S.; Funato, M.; Glaab, J.; Hagedorn, S.; Hirano, A.; Hirayama, H.; Ishii, R. The 2020 UV emitter roadmap. J. Phys. D Appl. Phys. 2020, 53, 503001. [Google Scholar] [CrossRef]
- Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D Appl. Phys. 2010, 43, 354002. [Google Scholar] [CrossRef]
- Takano, T.; Mino, T.; Sakai, J.; Noguchi, N.; Tsubaki, K.; Hirayama, H. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Express 2017, 10, 031002. [Google Scholar] [CrossRef]
- Endruweit, A.; Johnson, M.; Long, A. Curing of composite components by ultraviolet radiation: A review. Polym. Compos. 2006, 27, 119–128. [Google Scholar] [CrossRef]
- Decker, C. The use of UV irradiation in polymerization. Polym. Int. 1998, 45, 133–141. [Google Scholar] [CrossRef]
- Schreiner, M.; Martínez-Abaigar, J.; Glaab, J.; Jansen, M. UV-B induced secondary plant metabolites: Potential benefits for plant and human health. Optik Photonik 2014, 9, 34–37. [Google Scholar] [CrossRef]
- Hockberger, P.E. A History of Ultraviolet Photobiology for Humans, Animals and Microorganisms. Photochem. Photobiol. 2002, 76, 561–579. [Google Scholar] [CrossRef]
- Kneissl, M.; Seong, T.-Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 2019, 13, 233–244. [Google Scholar] [CrossRef]
- Chu, C.; Tian, K.; Che, J.; Shao, H.; Kou, J.; Zhang, Y.; Li, Y.; Wang, M.; Zhu, Y.; Zhang, Z.-H. On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer. Opt. Express 2019, 27, A620–A628. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-S.; Kim, J.K.; Cho, J.; Seong, T.-Y. Group III-nitride-based ultraviolet light-emitting diodes: Ways of increasing external quantum efficiency. ECS J. Solid State Sci. Technol. 2017, 6, Q42. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, S.; Rai, S.; Mandavilli, V.; Adivarahan, V.; Chitnis, A.; Shatalov, M.; Khan, M.A. AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission. Appl. Phys. Lett. 2003, 83, 3456–3458. [Google Scholar] [CrossRef]
- Wang, J.; Yan, J.; Guo, Y.; Zhang, Y.; Tian, Y.; Zhu, S.; Chen, X.; Sun, L.; Li, J. Recent progress of research on III-nitride deep ultraviolet light-emitting diode. Sci. Sin. Phys. Mech. Astron. 2015, 45, 067303. [Google Scholar]
- Moustakas, T.D.; Paiella, R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep. Prog. Phys. 2017, 80, 106501. [Google Scholar] [CrossRef]
- Heffelfinger, J.; Medlin, D.; McCarty, K. On the initial stages of AlN thin-film growth onto (0001) oriented Al2O3 substrates by molecular beam epitaxy. J. Appl. Phys. 1999, 85, 466–472. [Google Scholar] [CrossRef]
- Teramura, S.; Kawase, Y.; Sakuragi, Y.; Iwayama, S.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Miyake, H. High Crystallinity and Highly Relaxed Al0.60Ga0.40N Films Using Growth Mode Control Fabricated on a Sputtered AlN Template with High-Temperature Annealing. Phys. Status Solidi A 2020, 217, 1900868. [Google Scholar] [CrossRef]
- Miyake, H.; Lin, C.-H.; Tokoro, K.; Hiramatsu, K. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing. J. Cryst. Growth 2016, 456, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Miyake, H.; Nishio, G.; Suzuki, S.; Hiramatsu, K.; Fukuyama, H.; Kaur, J.; Kuwano, N. Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl. Phys. Express 2016, 9, 025501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Long, H.; Zhang, J.; Tan, B.; Chen, Q.; Zhang, S.; Shan, M.; Zheng, Z.; Dai, J.; Chen, C. Fast growth of high quality AlN films on sapphire using a dislocation filtering layer for ultraviolet light-emitting diodes. CrystEngComm 2019, 21, 4072–4078. [Google Scholar] [CrossRef]
- Susilo, N.; Ziffer, E.; Hagedorn, S.; Cancellara, L.; Netzel, C.; Ploch, N.L.; Wu, S.; Rass, J.; Walde, S.; Sulmoni, L. Improved performance of UVC-LEDs by combination of high-temperature annealing and epitaxially laterally overgrown AlN/sapphire. Photonics Res. 2020, 8, 589–594. [Google Scholar] [CrossRef]
- Chiu, C.; Lin, Y.; Tsai, M.; Lin, B.; Li, Z.; Tu, P.; Huang, S.; Hsu, E.; Uen, W.; Lee, W.-I. Improved output power of GaN-based ultraviolet light-emitting diodes with sputtered AlN nucleation layer. J. Cryst. Growth 2015, 414, 258–262. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Wu, P.-Y.; Chang, K.-S.; Lin, Y.-H.; Peng, W.-C.; Chang, Y.-Y.; Li, J.-P.; Yen, H.-W.; Wu, Y.S.; Miyake, H. High-quality and highly-transparent AlN template on annealed sputter-deposited AlN buffer layer for deep ultra-violet light-emitting diodes. Aip Adv. 2017, 7, 055110. [Google Scholar] [CrossRef] [Green Version]
- Walde, S.; Hagedorn, S.; Coulon, P.-M.; Mogilatenko, A.; Netzel, C.; Weinrich, J.; Susilo, N.; Ziffer, E.; Matiwe, L.; Hartmann, C. AlN overgrowth of nano-pillar-patterned sapphire with different offcut angle by metalorganic vapor phase epitaxy. J. Cryst. Growth 2020, 531, 125343. [Google Scholar] [CrossRef]
- Sun, H.; Mitra, S.; Subedi, R.C.; Zhang, Y.; Guo, W.; Ye, J.; Shakfa, M.K.; Ng, T.K.; Ooi, B.S.; Roqan, I.S. Unambiguously enhanced ultraviolet luminescence of AlGaN wavy quantum well structures grown on large misoriented sapphire substrate. Adv. Funct. Mater. 2019, 29, 1905445. [Google Scholar] [CrossRef]
- Uesugi, K.; Shojiki, K.; Tezen, Y.; Hayashi, Y.; Miyake, H. Suppression of dislocation-induced spiral hillocks in MOVPE-grown AlGaN on face-to-face annealed sputter-deposited AlN template. Appl. Phys. Lett. 2020, 116, 062101. [Google Scholar] [CrossRef]
- Lee, F.-W.; Ke, W.-C.; Cheng, C.-H.; Liao, B.-W.; Chen, W.-K. Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates. Appl. Surf. Sci. 2016, 375, 223–229. [Google Scholar] [CrossRef]
- Fleischmann, S.; Hagedorn, S.; Mogilatenko, A.; Weinrich, J.; Prasai, D.; Richter, E.; Unger, R.-S.; Weyers, M.; Tränkle, G. Designing sapphire surface patterns to promote AlGaN overgrowth in hydride vapor phase epitaxy. Semicond. Sci. Technol. 2020, 35, 035028. [Google Scholar] [CrossRef]
- Kataoka, K.; Funato, M.; Kawakami, Y. Broadband Ultraviolet Emission from 2D Arrays of AlGaN Microstructures Grown on the Patterned AlN Templates. Phys. Status Solidi A 2020, 217, 1900764. [Google Scholar] [CrossRef]
- Dong, P.; Yan, J.; Zhang, Y.; Wang, J.; Zeng, J.; Geng, C.; Cong, P.; Sun, L.; Wei, T.; Zhao, L. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J. Cryst. Growth 2014, 395, 9–13. [Google Scholar] [CrossRef]
- Hu, H.; Tang, B.; Wan, H.; Sun, H.; Zhou, S.; Dai, J.; Chen, C.; Liu, S.; Guo, L.J. Boosted ultraviolet electroluminescence of InGaN/AlGaN quantum structures grown on high-index contrast patterned sapphire with silica array. Nano Energy 2020, 69, 104427. [Google Scholar] [CrossRef]
- Hagedorn, S.; Walde, S.; Knauer, A.; Susilo, N.; Pacak, D.; Cancellara, L.; Netzel, C.; Mogilatenko, A.; Hartmann, C.; Wernicke, T. Status and Prospects of AlN Templates on Sapphire for Ultraviolet Light-Emitting Diodes. Phys. Status Solidi A 2020, 217, 1901022. [Google Scholar] [CrossRef] [Green Version]
- Tong, F.; Wu, X.; Jia, W.; Guo, J.; Pan, Y.; Lv, Y.; Jia, D.; Zhao, X. NiS nanosheets with novel structure anchored on coal-based carbon fibers prepared by electrospinning for flexible supercapacitors. CrystEngComm 2020, 22, 1625–1632. [Google Scholar] [CrossRef]
- Shen, X.-Q.; Kojima, K.; Okumura, H. Single-phase high-quality semipolar (10–13) AlN epilayers on m-plane (10–10) sapphire substrates. Appl. Phys. Express 2020, 13, 035502. [Google Scholar] [CrossRef]
- Luo, W.; Liu, B.; Li, Z.; Yang, F.; Li, Z.; Yang, Q.; Gao, H.; Wang, K.; Zhang, R. Improvement of the interfaces in AlGaN/AlN superlattice grown by NH3 flow-rate modulation epitaxy. Appl. Phys. Express 2019, 13, 015511. [Google Scholar] [CrossRef]
- Yu, H.; Ren, Z.; Zhang, H.; Dai, J.; Chen, C.; Long, S.; Sun, H. Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier. Opt. Express 2019, 27, A1544–A1553. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Yu, H.; Ren, Z.; Zhang, H.; Dai, J.; Chen, C.; Sun, H. Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes with step-like quantum barriers. IEEE J. Quantum Electron. 2019, 56, 1–6. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M. Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices. Appl. Phys. Lett. 2011, 99, 251112. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ichikawa, S.; Funato, M.; Kawakami, Y. Self-Limiting Growth of Ultrathin GaN/AlN Quantum Wells for Highly Efficient Deep Ultraviolet Emitters. Adv. Opt. Mater. 2019, 7, 1900860. [Google Scholar] [CrossRef]
- Shan, M.; Zhang, Y.; Tran, T.B.; Jiang, J.a.; Long, H.; Zheng, Z.; Wang, A.g.; Guo, W.; Ye, J.; Chen, C. Deep UV laser at 249 nm based on GaN quantum wells. ACS Photonics 2019, 6, 2387–2391. [Google Scholar] [CrossRef]
- Zhao, P.; Han, L.; McGoogan, M.R.; Zhao, H. Analysis of TM mode light extraction efficiency enhancement for deep ultraviolet AlGaN quantum wells light-emitting diodes with III-nitride micro-domes. Opt. Mater. Express 2012, 2, 1397–1406. [Google Scholar] [CrossRef]
- Yun, J.; Hirayama, H. Investigation of the light-extraction efficiency in 280 nm AlGaN-based light-emitting diodes having a highly transparent p-AlGaN layer. J. Appl. Phys. 2017, 121, 013105. [Google Scholar] [CrossRef]
- Yue, Q.; Li, K.; Kong, F.; Zhao, J.; Liu, M. Analysis on the effect of amorphous photonic crystals on light extraction efficiency enhancement for GaN-based thin-film-flip-chip light-emitting diodes. Opt. Commun. 2016, 367, 72–79. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.M.; Gaevski, M.E.; Chen, C.; Fareed, Q.; Yang, J.; Simin, G.; Khan, M.A. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl. Phys. Lett. 2002, 80, 3542–3544. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Lee, J.W.; Jang, J.; Shin, I.-S.; Jin, L.; Park, J.H.; Kim, J.; Lee, J.; Noh, H.-S.; Kim, Y.-I. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nano-patterned AlN/sapphire substrates. Appl. Phys. Lett. 2017, 110, 191103. [Google Scholar] [CrossRef]
- Jain, R.; Sun, W.; Yang, J.; Shatalov, M.; Hu, X.; Sattu, A.; Lunev, A.; Deng, J.; Shturm, I.; Bilenko, Y. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl. Phys. Lett. 2008, 93, 051113. [Google Scholar] [CrossRef]
- Hirayama, H.; Yatabe, T.; Noguchi, N.; Ohashi, T.; Kamata, N. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett. 2007, 91, 071901. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, L.; Zhao, Z.; Tian, K.; Chu, C.; Zheng, Q.; Zhang, Y.; Li, Q.; Zhang, Z.-H. Different scattering effect of nano-patterned sapphire substrate for TM-and TE-polarized light emitted from AlGaN-based deep ultraviolet light-emitting diodes. Opt. Mater. Express 2021, 11, 729–739. [Google Scholar] [CrossRef]
- Dalmau, R.; Moody, B. Polarization-induced doping in graded AlGaN epilayers grown on AlN single crystal substrates. ECS Trans. 2018, 86, 31. [Google Scholar] [CrossRef]
- Simon, J.; Protasenko, V.; Lian, C.; Xing, H.; Jena, D. Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures. Science 2010, 327, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Sun, H.; Li, X.; Sun, H.; Zhang, C.; Zhang, Z.; Guo, Z. Efficiency improvements in AlGaN-based deep ultraviolet light-emitting diodes using inverted-V-shaped graded Al composition electron blocking layer. Superlattices Microstruct. 2015, 88, 467–473. [Google Scholar] [CrossRef]
- Usman, M.; Malik, S.; Hussain, M.; Jamal, H.; Khan, M.A. Improving AlGaN-based ultraviolet-C (UV–C) light-emitting diodes by introducing quaternary-graded AlInGaN final quantum barrier. Opt. Mater. 2021, 112, 110745. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M.; Kobayashi, N. Intentional control of n-type conduction for Si-doped AlN and AlXGa1− XN (0.42 ≤ x < 1). Appl. Phys. Lett. 2002, 81, 1255–1257. [Google Scholar]
- Nakarmi, M.; Kim, K.; Zhu, K.; Lin, J.; Jiang, H. Transport properties of highly conductive n-type Al-rich AlxGa1− xN (x ≥ 0.7). Appl. Phys. Lett. 2004, 85, 3769–3771. [Google Scholar] [CrossRef]
- Mehnke, F.; Wernicke, T.; Pingel, H.; Kuhn, C.; Reich, C.; Kueller, V.; Knauer, A.; Lapeyrade, M.; Weyers, M.; Kneissl, M. Highly conductive n-AlxGa1− xN layers with aluminum mole fractions above 80%. Appl. Phys. Lett. 2013, 103, 212109. [Google Scholar] [CrossRef]
- Nam, K.; Nakarmi, M.; Li, J.; Lin, J.; Jiang, H. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Appl. Phys. Lett. 2003, 83, 878–880. [Google Scholar] [CrossRef]
- Nakarmi, M.; Nepal, N.; Lin, J.; Jiang, H. Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys. Appl. Phys. Lett. 2009, 94, 091903. [Google Scholar] [CrossRef] [Green Version]
- Piprek, J. Polarization-doped AlGaN light-emitting diode. In Proceedings of the 2011 Numerical Simulation of Optoelectronic Devices, Rome, Italy, 5–8 September 2011; pp. 191–192. [Google Scholar]
- Allerman, A.; Crawford, M.; Miller, M.; Lee, S. Growth and characterization of Mg-doped AlGaN–AlN short-period superlattices for deep-UV optoelectronic devices. J. Cryst. Growth 2010, 312, 756–761. [Google Scholar] [CrossRef]
- Zheng, T.; Lin, W.; Liu, R.; Cai, D.; Li, J.; Li, S.; Kang, J. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ebata, K.; Nishinaka, J.; Taniyasu, Y.; Kumakura, K. High hole concentration in Mg-doped AlN/AlGaN superlattices with high Al content. Jpn. J. Appl. Phys. 2018, 57, 04FH09. [Google Scholar] [CrossRef]
- Nakarmi, M.; Kim, K.; Li, J.; Lin, J.; Jiang, H. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl. Phys. Lett. 2003, 82, 3041–3043. [Google Scholar] [CrossRef]
- Wang, L.; He, W.; Zheng, T.; Chen, Z.; Zheng, S. Enhanced optical performance of AlGaN-based deep-ultraviolet light-emitting diode with m-shaped hole blocking layer and w-shaped electron blocking layer. Superlattices Microstruct. 2019, 133, 106188. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Huang Chen, S.-W.; Zhang, Y.; Li, L.; Wang, S.-W.; Tian, K.; Chu, C.; Fang, M.; Kuo, H.-C.; Bi, W. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes. ACS Photonics 2017, 4, 1846–1850. [Google Scholar] [CrossRef]
- Lang, J.; Xu, F.; Ge, W.; Liu, B.; Zhang, N.; Sun, Y.; Wang, J.; Wang, M.; Xie, N.; Fang, X. Greatly enhanced performance of AlGaN-based deep ultraviolet light emitting diodes by introducing a polarization modulated electron blocking layer. Opt. Express 2019, 27, A1458–A1466. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Zhang, Y.; Zhang, H.; Long, H.; Chen, Q.; Shan, M.; Du, S.; Dai, J.; Chen, C. Enhanced performance of AlGaN-based deep ultraviolet light-emitting diodes with chirped superlattice electron deceleration layer. Nanoscale Res. Lett. 2019, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Long, H.; Zhang, Y.; Chen, Q.; Dai, J.; Zhang, S.; Chen, J.; Liang, R.; Xu, L.; Wu, F. Monolithic integration of deep ultraviolet LED with a multiplicative photoelectric converter. Nano Energy 2019, 66, 104181. [Google Scholar] [CrossRef]
- De Santi, C.; Meneghini, M.; Monti, D.; Glaab, J.; Guttmann, M.; Rass, J.; Einfeldt, S.; Mehnke, F.; Enslin, J.; Wernicke, T. Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs. Photonics Res. 2017, 5, A44–A51. [Google Scholar] [CrossRef]
- Wu, T.; Lin, Y.; Peng, Z.; Chen, H.; Shangguan, Z.; Liu, M.; Chen, S.-W.H.; Lin, C.-H.; Kuo, H.-C.; Chen, Z. Interplay of carriers and deep-level recombination centers of 275-nm light-emitting diodes—Analysis on the parasitic peaks over wide ranges of temperature and injection density. Opt. Express 2019, 27, A1060–A1073. [Google Scholar] [CrossRef]
- Peng, Z.; Guo, W.; Wu, T.; Guo, Z.; Lu, Y.; Zheng, Y.; Lin, Y.; Chen, Z. Temperature-Dependent Carrier Recombination and Efficiency Droop of AlGaN Deep Ultraviolet Light-Emitting Diodes. IEEE Photonics J. 2019, 12, 1–8. [Google Scholar] [CrossRef]
- Nippert, F.; Tollabi Mazraehno, M.; Davies, M.J.; Hoffmann, M.P.; Lugauer, H.-J.; Kure, T.; Kneissl, M.; Hoffmann, A.; Wagner, M.R. Auger recombination in AlGaN quantum wells for UV light-emitting diodes. Appl. Phys. Lett. 2018, 113, 071107. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Epler, J.; Krames, M.; Goetz, W.; Gherasimova, M.; Ren, Z.; Han, J.; Kneissl, M.; Johnson, N. Vertical injection thin-film AlGaN/AlGaN multiple-quantum-well deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 2006, 89, 241113. [Google Scholar] [CrossRef]
- Khizar, M.; Fan, Z.; Kim, K.; Lin, J.; Jiang, H. Nitride deep-ultraviolet light-emitting diodes with microlens array. Appl. Phys. Lett. 2005, 86, 173504. [Google Scholar] [CrossRef] [Green Version]
- Oder, T.; Kim, K.; Lin, J.; Jiang, H. III-nitride blue and ultraviolet photonic crystal light emitting diodes. Appl. Phys. Lett. 2004, 84, 466–468. [Google Scholar] [CrossRef]
- Du, P.; Rao, L.; Liu, Y.; Cheng, Z. Enhancing the light extraction efficiency of AlGaN LED with nanowire photonic crystal and graphene transparent electrode. Superlattices Microstruct. 2019, 133, 106216. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Y.; Yan, J.; Wu, Q.; Lu, Y.; Wu, Z.; Gu, W.; Wei, X.; Wang, J.; Li, J. Deep ultraviolet light-emitting diodes based on a well-ordered AlGaN nanorod array. Photonics Res. 2019, 7, B66–B72. [Google Scholar] [CrossRef]
- Chen, Q.; Dai, J.; Li, X.; Gao, Y.; Long, H.; Zhang, Z.-H.; Chen, C.; Kuo, H.-C. Enhanced Optical Performance of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes by Electrode Patterns Design. IEEE Electron Device Lett. 2019, 40, 1925–1928. [Google Scholar] [CrossRef]
- Kang, C.-Y.; Lin, C.-H.; Wu, T.; Lee, P.-T.; Chen, Z.; Kuo, H.-C. A novel liquid packaging structure of deep-ultraviolet light-emitting diodes to enhance the light-extraction efficiency. Crystals 2019, 9, 203. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.T.; Pai, Y.-M.; Lin, C.-H.; Chen, L.-C.; Nguyen, H.T.; Wang, H.-C. Nanoparticle-Doped Polydimethylsiloxane Fluid Enhances the Optical Performance of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes. Nanoscale Res. Lett. 2019, 14, 1–6. [Google Scholar] [CrossRef]
- Chang, M.-H.; Das, D.; Varde, P.; Pecht, M. Light emitting diodes reliability review. Microelectron. Reliab. 2012, 52, 762–782. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Lee, J.-W.; Jun, D.-J.; Song, S.-J.; Oh, J.-T.; Jeong, H.-H.; Seong, T.-Y.; Amano, H. Effects of Ultraviolet Wavelength and Ambient Temperature on Reliability of Silicones in InAlGaN-Based Light-Emitting-Diode Package. ECS J. Solid State Sci. Technol. 2020, 9, 035005. [Google Scholar] [CrossRef]
- Nagasawa, Y.; Hirano, A. Review of encapsulation materials for AlGaN-based deep-ultraviolet light-emitting diodes. Photonics Res. 2019, 7, B55–B65. [Google Scholar] [CrossRef]
- Yasan, A.; McClintock, R.; Mayes, K.; Shiell, D.; Gautero, L.; Darvish, S.; Kung, P.; Razeghi, M. 4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes. Appl. Phys. Lett. 2003, 83, 4701–4703. [Google Scholar] [CrossRef]
- Stölmacker, C.; Ploch, N.L.; Thies, A.; Hochheim, S.; Rass, J.; Schnieder, F.; Mogilatenko, A.; Ruschel, J.; Kolbe, T.; Knigge, S. Electroplated Gold Microstuds for Thermocompression Bonding of UV LED Chips. IEEE T. Comp. Pack. Man. 2019, 9, 2326–2331. [Google Scholar] [CrossRef]
- Shashkov, P.; Khomutov, G.; Yerokhin, A.; Usov, S. Non-Metallic Coating and Method of Its Production. Google Patents WO2012/107754A9, 16 August 2012. [Google Scholar]
- Gerchman, Y.; Mamane, H.; Friedman, N.; Mandelboim, M. Corrigendum to” UV-LED disinfection of Coronavirus: Wavelength effect”[Journal of Photochemistry and Photobiology B: Biology 212 (2020) 112044-end page]. J. Photochem. Photobiol. B Biol. 2021, 216, 112132. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Malo, A.; Palou, E. Ultraviolet light and food preservation. In Novel Food Processing Technologies; CRC Press: Boca Raton, FL, USA, 2005; pp. 405–422. [Google Scholar]
- Rastogi, R.P.; Kumar, A.; Tyagi, M.B.; Sinha, R.P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyangaresi, P.O.; Qin, Y.; Chen, G.; Zhang, B.; Lu, Y.; Shen, L. Comparison of the performance of pulsed and continuous UVC-LED irradiation in the inactivation of bacteria. Water Res. 2019, 157, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Darnell, M.E.; Subbarao, K.; Feinstone, S.M.; Taylor, D.R. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J. Virol. Methods 2004, 121, 85–91. [Google Scholar] [CrossRef]
- Sholtes, K.A.; Lowe, K.; Walters, G.W.; Sobsey, M.D.; Linden, K.G.; Casanova, L.M. Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water. Environ. Technol. 2016, 37, 2183–2188. [Google Scholar] [CrossRef]
- Nyangaresi, P.O.; Qin, Y.; Chen, G.; Zhang, B.; Lu, Y.; Shen, L. Comparison of UV-LED photolytic and UV-LED/TiO2 photocatalytic disinfection for Escherichia coli in water. Catal. Today 2019, 335, 200–207. [Google Scholar] [CrossRef]
- Nyangaresi, P.O.; Qin, Y.; Chen, G.; Zhang, B.; Lu, Y.; Shen, L. Effects of single and combined UV-LEDs on inactivation and subsequent reactivation of E. coli in water disinfection. Water Res. 2018, 147, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Sholtes, K.; Linden, K.G. Pulsed and continuous light UV LED: Microbial inactivation, electrical, and time efficiency. Water Res. 2019, 165, 114965. [Google Scholar] [CrossRef]
- Matsumoto, T.; Tatsuno, I.; Hasegawa, T. Instantaneous water purification by deep ultraviolet light in water waveguide: Escherichia coli bacteria disinfection. Water 2019, 11, 968. [Google Scholar] [CrossRef] [Green Version]
- Rudnick, S.N.; First, M.W.; Vincent, R.L.; Brickner, P.W. In-place testing of in-duct ultraviolet germicidal irradiation. HVAC&R Res. 2009, 15, 525–535. [Google Scholar]
- Yang, Y.; Lai, A.C.; Kong, R.; Deng, Q. Experimental and numerical study of the performance of upper-room ultraviolet germicidal irradiation with the effective Z-value of airborne bacteria. Aerosol Sci. Technol. 2017, 51, 1123–1134. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, H.; Nunayon, S.S.; Chan, V.; Lai, A.C. Disinfection efficacy of ultraviolet germicidal irradiation on airborne bacteria in ventilation ducts. Indoor Air 2018, 28, 806–817. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, X.; Nunayon, S.S.; Lai, A.C. Disinfection by in-duct ultraviolet lamps under different environmental conditions in turbulent airflows. Indoor Air 2020, 30, 500–511. [Google Scholar] [CrossRef] [PubMed]
UVA | UVB | UVC | |
---|---|---|---|
Wavelength | 315–400 nm | 280–315 nm | 100–280 nm |
Penetration ability | With strong penetrating power, it can penetrate most transparent glasses and plastic | Intermediate penetrating power: shorter-wavelength part will also be absorbed by glass | Weak penetration |
Application | UV radiation therapy, document and banknote, 3D printing, anti-counterfeiting detector, catalyst of light, air purification, medical phototherapy | Health care, plant growth | Sterilization function, water purification, and air purification |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, T.-C.; Teng, Y.-T.; Yeh, Y.-W.; Fan, X.; Chu, K.-H.; Lin, S.-H.; Yeh, K.-K.; Lee, P.-T.; Lin, Y.; Chen, Z.; et al. Perspectives on UVC LED: Its Progress and Application. Photonics 2021, 8, 196. https://doi.org/10.3390/photonics8060196
Hsu T-C, Teng Y-T, Yeh Y-W, Fan X, Chu K-H, Lin S-H, Yeh K-K, Lee P-T, Lin Y, Chen Z, et al. Perspectives on UVC LED: Its Progress and Application. Photonics. 2021; 8(6):196. https://doi.org/10.3390/photonics8060196
Chicago/Turabian StyleHsu, Tsung-Chi, Yu-Tsai Teng, Yen-Wei Yeh, Xiaotong Fan, Kuo-Hsiung Chu, Su-Hui Lin, Kuo-Kuang Yeh, Po-Tsung Lee, Yue Lin, Zhong Chen, and et al. 2021. "Perspectives on UVC LED: Its Progress and Application" Photonics 8, no. 6: 196. https://doi.org/10.3390/photonics8060196
APA StyleHsu, T. -C., Teng, Y. -T., Yeh, Y. -W., Fan, X., Chu, K. -H., Lin, S. -H., Yeh, K. -K., Lee, P. -T., Lin, Y., Chen, Z., Wu, T., & Kuo, H. -C. (2021). Perspectives on UVC LED: Its Progress and Application. Photonics, 8(6), 196. https://doi.org/10.3390/photonics8060196