On-Chip Integrated Photonic Devices Based on Phase Change Materials
Abstract
:1. Introduction
2. Phase Change Materials
- Significant contrast in refractive indices of different phases;
- Rapid switching;
- Chemical stability;
- Reversibly switchable between phases for a large number of cycles.
- Long cycling endurance, which leads to a large number of cycles.
2.1. Chalcogenides
2.2. Transition Metal Oxides
2.3. Organic Phase Change Materials
2.4. Silicon
3. Phase Switching
3.1. Electrical Switching
3.2. Optical Switching
4. Phase Change Memories
5. In-Memory and Neuromorphic Computing Using PCM
6. Phase Change Modulators and Switches
6.1. VO2 Metasurfaces
6.2. Chalcogenide Modulators and Switches
7. Discussion and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balanis, C.A. Antenna Theory Analysis and Design. Pdf, 2nd ed.; Wiley Sons Inc.: New York, NY, USA, 1997. [Google Scholar]
- Tien, P.K. Light Waves in Thin Films and Integrated Optics. Appl. Opt. 1971, 10, 2395–2413. [Google Scholar] [CrossRef]
- Capolino, F. Theory and Phenomena of Metamaterials; Capolino, F., Ed.; CRC Press: Boca Raton, FL, USA, 2017; Volume 8, ISBN 9781315219370. [Google Scholar]
- Siegrist, T.; Merkelbach, P.; Wuttig, M. Phase Change Materials: Challenges on the Path to a Universal Storage Device. Annu. Rev. Condens. Matter Phys. 2012, 3, 215–237. [Google Scholar] [CrossRef]
- Wang, L.; Tu, L.; Wen, J. Application of phase-change materials in memory taxonomy. Sci. Technol. Adv. Mater. 2017, 18, 406–429. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Raghuwanshi, S.K.; Srinivas, T. Nanophotonic On-Chip hybrid plasmonic Electro-Optic modulator with phase change materials. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2019, 383, 3196–3199. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, L.; Lu, L.; Xu, J.; Wang, N.; Hu, H.; Rahman, B.M.A.A.; Zhou, Z.; Chen, J. Miniature Multilevel Optical Memristive Switch Using Phase Change Material. ACS Photonics 2019, 6, 2205–2212. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zhang, H.; Zhou, L.; Lu, L.; Chen, J.; Rahman, B.M.A. Design of ultra-compact optical memristive switches with GST as the active material. Micromachines 2019, 10, 453. [Google Scholar] [CrossRef] [Green Version]
- Ruiz de Galarreta, C.; Carrillo, S.G.C.; Au, Y.-Y.; Gemo, E.; Trimby, L.; Shields, J.; Humphreys, E.; Faneca, J.; Cai, L.; Baldycheva, A.; et al. Tunable optical metasurfaces enabled by chalcogenide Phase-Change materials: From the visible to the THz. J. Opt. 2020, 22, 114001. [Google Scholar] [CrossRef]
- Pernice, W.H.P.; Bhaskaran, H. Photonic non-volatile memories using phase change materials. Appl. Phys. Lett. 2012, 101, 171101. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Liu, J. Overview of Phase-Change Materials Based Photonic Devices. IEEE Access 2020, 8, 121211–121245. [Google Scholar] [CrossRef]
- Feldmann, J.; Stegmaier, M.; Gruhler, N.; Ríos, C.; Bhaskaran, H.; Wright, C.D.; Pernice, W.H.P.P. Calculating with light using a chip-Scale all-Optical abacus. Nat. Commun. 2017, 8, 1256. [Google Scholar] [CrossRef] [Green Version]
- Shadmani, A.; Miri, M. Design and Simulation of Dual Polarization GST-On-Silicon Nitride Optical Modulator. In Proceedings of the 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April–2 May 2019. [Google Scholar]
- Yu, Z.; Zheng, J.; Xu, P.; Zhang, W.; Wu, Y. Ultracompact Electro-Optical Modulator-Based Ge 2 Sb 2 Te 5 on Silicon. IEEE Photonics Technol. Lett. 2018, 30, 250–253. [Google Scholar] [CrossRef]
- Ghosh, R.R.; Bhardwaj, P.; Dhawan, A. Numerical modeling of integrated electro-Optic modulators based on mode-gap shifting in photonic crystal slab waveguides containing a phase change material. J. Opt. Soc. Am. B 2020, 37, 2287. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, M.; Dai, D. Multichannel mode-selective silicon photonic add/drop multiplexer with phase change material. J. Opt. Soc. Am. B 2020, 37, 3341. [Google Scholar] [CrossRef]
- Wang, L.; Lu, S.R.; Wen, J. Recent Advances on Neuromorphic Systems Using Phase-Change Materials. Nanoscale Res. Lett. 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, J.; Youngblood, N.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P.P. All-Optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019, 569, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, K.J.; Haglund, R.F.; Weiss, S.M. Optical phase change materials in integrated silicon photonic devices: Review. Opt. Mater. Express 2018, 8, 2415. [Google Scholar] [CrossRef]
- Yang, Z.; Ramanathan, S. Breakthroughs in photonics 2014: Phase change materials for photonics. IEEE Photonics J. 2015, 7, 1–5. [Google Scholar] [CrossRef]
- Ding, F.; Yang, Y.; Bozhevolnyi, S.I. Dynamic Metasurfaces Using Phase-Change Chalcogenides. Adv. Opt. Mater. 2019, 7, 1801709. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Sarangan, A.M.; Agha, I. A Review of Germanium-Antimony-Telluride Phase Change Materials for Non-Volatile Memories and Optical Modulators. Appl. Sci. 2019, 9, 530. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, I.; Saha, G.; Sengupta, A.; Roy, K. Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons. Sci. Rep. 2018, 8, 12980. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D.W.; Muskens, O.L. A New Family of Ultralow Loss Reversible Phase-Change Materials for Photonic Integrated Circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 2002447. [Google Scholar] [CrossRef]
- Miscuglio, M.; Meng, J.; Mehrabian, A.; Sorger, V.; Yesiliurt, O.; Prokopeva, L.; Kildishev, A.; Zhang, Y.; Hu, J. Artificial Synapse with Mnemonic Functionality using GSST-based Photonic Integrated Memory. Appl. Comput. Electromagn. Soc. 2021, 35, 1447–1449. [Google Scholar] [CrossRef]
- Currie, M.; Mastro, M.A.; Wheeler, V.D. Characterizing the tunable refractive index of vanadium dioxide. Opt. Mater. Express 2017, 7, 1697. [Google Scholar] [CrossRef]
- Green, M.A. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol. Energy Mater. Sol. Cells 2008, 92, 1305–1310. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Studna, A.A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 1983, 27, 985–1009. [Google Scholar] [CrossRef]
- Wang, L.; Eliceiri, M.; Deng, Y.; Rho, Y.; Shou, W.; Pan, H.; Yao, J.; Grigoropoulos, C.P. Fast Reversible Phase Change Silicon for Visible Active Photonics. Adv. Funct. Mater. 2020, 30, 1910784. [Google Scholar] [CrossRef] [Green Version]
- Kalikka, J.; Akola, J.; Jones, R.O. Simulation of crystallization in Ge2 Sb2 Te5: A memory effect in the canonical phase-Change material. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 90, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Skelton, J.M.; Pallipurath, A.R.; Lee, T.H.; Elliott, S.R. Atomistic origin of the enhanced crystallization speed and n-type conductivity in Bi-doped Ge-Sb-Te phase-change materials. Adv. Funct. Mater. 2014, 24, 7291–7300. [Google Scholar] [CrossRef] [Green Version]
- Lencer, D.; Salinga, M.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Wuttig, M. A map for phase-change materials. Nat. Mater. 2008, 7, 972–977. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Y.; Miao, X. Chalcogenide materials for optoelectronic memory and neuromorphic computing. In Photo-Electroactive Nonvolatile Memories for Data Storage and Neuromorphic Computing; Han, S.-T., Zhou, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 293–315. ISBN 978-0-12-819717-2. [Google Scholar]
- Jiang, W. Nonvolatile and ultra-low-loss reconfigurable mode (De)multiplexer/switch using triple-waveguide coupler with Ge2Sb2Se4Te1 phase change material. Sci. Rep. 2018, 8, 15946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chou, J.B.; Li, J.; Li, H.; Du, Q.; Yadav, A.; Zhou, S.; Shalaginov, M.Y.; Fang, Z.; Zhong, H.; et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 2019, 10, 1–2. [Google Scholar] [CrossRef]
- Gong, Z.; Yang, F.; Wang, L.; Chen, R.; Wu, J.; Grigoropoulos, C.P.; Yao, J. Phase change materials in photonic devices. J. Appl. Phys. 2021, 129. [Google Scholar] [CrossRef]
- Faneca, J.; Trimby, L.; Zeimpekis, I.; Delaney, M.; Hewak, D.W.; Gardes, F.Y.; Wright, C.D.; Baldycheva, A. On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials. Opt. Express 2020, 28, 16394. [Google Scholar] [CrossRef]
- Vedeshwar, A.; Optical, A.V.; Stibnite, P.; Journal, S.F. Optical Properties of Amorphous and Polycrystalline Stibnite (Sb2S3) Films To cite this version: HAL Id: Jpa-00249371. J. Phys. III 1995, 5, 1161–1172. [Google Scholar]
- Kim, J. Optical Disc and Optical Recording Materials. Polym. Sci. Technol. 1996, 7, 646–654. [Google Scholar]
- Dong, W.; Liu, H.; Behera, J.K.; Lu, L.; Ng, R.J.H.; Sreekanth, K.V.; Zhou, X.; Yang, J.K.W.; Simpson, R.E. Wide Bandgap Phase Change Material Tuned Visible Photonics. Adv. Funct. Mater. 2019, 29, 1806181. [Google Scholar] [CrossRef] [Green Version]
- Faneca, J.; Zeimpekis, I.; Ilie, S.T.; Bucio, T.D.; Grabska, K.; Hewak, D.W.; Gardes, F.Y. Towards low loss non-volatile phase change materials in mid index waveguides. arXiv 2021, arXiv:2101.11127. [Google Scholar]
- Mandal, A.; Cui, Y.; McRae, L.; Gholipour, B. Reconfigurable chalcogenide phase change metamaterials: A material, device, and fabrication perspective. J. Phys. Photonics 2021. [Google Scholar] [CrossRef]
- Ruiz de Galarreta, C.; Sinev, I.; Alexeev, A.M.; Trofimov, P.; Ladutenko, K.; Garcia-Cuevas Carrillo, S.; Gemo, E.; Baldycheva, A.; Bertolotti, J.; David Wright, C. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 2020, 7, 476–484. [Google Scholar] [CrossRef]
- Fang, Z.; Zheng, J.; Majumdar, A. Non-volatile Integrated Photonics enabled by Broadband Transparent Phase Change Material. In Proceedings of the Conference on Lasers and electro-optics, Washington, DC, USA, 10–15 May 2020; p. JTh2B.3. [Google Scholar]
- Delaney, M.; Zeimpekis, I.; Du, H.; Yan, X.; Banakar, M.; Thomson, D.J.; Hewak, D.W.; Muskens, O.L. Non-volatile programmable silicon photonics using an ultralow loss Sb2Se3 phase change material. arXiv 2021, arXiv:2101.03623. [Google Scholar]
- Yu, T.; Ma, X.; Pastor, E.; George, J.K.; Wall, S.; Miscuglio, M.; Simpson, R.E.; Sorger, V.J. All-Chalcogenide Programmable All-Optical Deep Neural Networks. arXiv 2021, arXiv:2102.10398. [Google Scholar]
- Fang, Z.; Zheng, J.; Saxena, A.; Whitehead, J.; Chen, Y.; Majumdar, A. Non-Volatile Reconfigurable Integrated Photonics Enabled by Broadband Low-Loss Phase Change Material. Adv. Opt. Mater. 2021, 2002049, 2002049. [Google Scholar] [CrossRef]
- Faneca, J.; Garcia-Cuevas Carrillo, S.; Gemo, E.; de Galarreta, C.R.; Domínguez Bucio, T.; Gardes, F.Y.; Bhaskaran, H.; Pernice, W.H.P.; Wright, C.D.; Baldycheva, A. Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands. Opt. Mater. Express 2020, 10, 1778. [Google Scholar] [CrossRef]
- Eyert, V. The metal-insulator transitions of VO2: A band theoretical approach. Ann. Phys. 2002, 11, 650–704. [Google Scholar] [CrossRef] [Green Version]
- Takami, H.; Kanki, T.; Ueda, S.; Kobayashi, K.; Tanaka, H. Filling-controlled Mott transition in W-doped VO2. Phys. Rev. B 2012, 85, 205111. [Google Scholar] [CrossRef]
- Wegkamp, D.; Stähler, J. Ultrafast dynamics during the photoinduced phase transition in VO2. Prog. Surf. Sci. 2015, 90, 464–502. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Biegler, Z.; Back, T.; Sarangan, A. Vanadium dioxide phase change thin films produced by thermal oxidation of metallic vanadium. Thin Solid Films 2020, 707, 138117. [Google Scholar] [CrossRef]
- Miller, K.J.; Hallman, K.A.; Haglund, R.F.; Weiss, S.M. Silicon waveguide optical switch with embedded phase change material. Opt. Express 2017, 25, 26527–26536. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.K.; Ho, Y.; Matsui, H.; Delaunay, J. Optically Pumped Hybrid Plasmonic-Photonic Waveguide Modulator Using the VO2 Metal-Insulator Phase Transition. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Sweatlock, L.A.; Diest, K. Vanadium dioxide based plasmonic modulators. Opt. Express 2012, 20, 8700–8709. [Google Scholar] [CrossRef] [PubMed]
- Pouyan, S.M.; Miri, M.; Sheikhi, M.H. Design and numerical analysis of a high-performance optical modulator based on Si-VO2 Bragg grating waveguide. Appl. Opt. 2021, 60, 1083–1091. [Google Scholar] [CrossRef]
- Chang, T.; Cao, X.; Li, N.; Long, S.; Zhu, Y.; Huang, J.; Luo, H.; Jin, P. Mitigating Deterioration of Vanadium Dioxide Thermochromic Films by Interfacial Encapsulation. Matter 2019, 1, 734–744. [Google Scholar] [CrossRef] [Green Version]
- Pitchappa, P.; Kumar, A.; Prakash, S.; Jani, H.; Venkatesan, T.; Singh, R. Chalcogenide Phase Change Material for Active Terahertz Photonics. Adv. Mater. 2019, 31, 1808157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Gao, H.; Xing, L.; Dong, W.; Li, A.; Cheng, P.; Liu, P.; Wang, G. Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials. Energy Storage Mater. 2019, 18, 280–288. [Google Scholar] [CrossRef]
- Goswami, S.S.; Matula, A.J.; Rath, S.P.; Hedström, S.; Saha, S.; Annamalai, M.; Sengupta, D.; Patra, A.; Ghosh, S.; Jani, H.; et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 2017, 16, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.; Lanzani, G. Organic photonics for communications. Nat. Photonics 2010, 4, 438–446. [Google Scholar] [CrossRef]
- Ding, G.; Wang, Y.; Zhang, G.; Zhou, K.; Zeng, K.; Li, Z.; Zhou, Y.; Zhang, C.; Chen, X.; Han, S.-T. 2D Metal-Organic Framework Nanosheets with Time-Dependent and Multilevel Memristive Switching. Adv. Funct. Mater. 2019, 29, 1806637. [Google Scholar] [CrossRef]
- van de Burgt, Y.; Lubberman, E.; Fuller, E.J.; Keene, S.T.; Faria, G.C.; Agarwal, S.; Marinella, M.J.; Alec Talin, A.; Salleo, A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 2017, 16, 414–418. [Google Scholar] [CrossRef]
- Gu, C.; Lee, J.-S. Flexible Hybrid Organic–Inorganic Perovskite Memory. ACS Nano 2016, 10, 5413–5418. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Wang, Y.; Zhou, Y.; Han, S.-T. Perovskites for phototunable memories and neuromorphic computing. In Photo-Electroactive Nonvolatile Memories for Data Storage and Neuromorphic Computing; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–292. ISBN 9780128197172. [Google Scholar]
- Cho, E.C.; Kim, Y.D.; Cho, K. Thermally responsive poly (N-isopropylacrylamide) monolayer on gold: Synthesis, surface characterization, and protein interaction/adsorption studies. Polym. Guildf 2004, 45, 3195–3204. [Google Scholar] [CrossRef]
- Nash, M.E.; Carroll, W.M.; Nikoloskya, N.; Yang, R.; Connell, C.O.; Gorelov, A.V.; Dockery, P.; Liptrot, C.; Lyng, F.M.; Garcia, A.; et al. Straightforward, one-step fabrication of ultrathin thermoresponsive films from commercially available pNIPAm for cell culture and recovery. ACS Appl. Mater. Interfaces 2011, 3, 1980–1990. [Google Scholar] [CrossRef]
- Garner, B.W.; Cai, T.; Ghosh, S.; Hu, Z.; Neogi, A. Refractive Index Change Due to Volume-Phase Transition in Polyacrylamide Gel Nanospheres for Optoelectronics and Bio-photonics. Appl. Phys. Express 2009, 2, 057001. [Google Scholar] [CrossRef]
- Aleksandrova, R.; Philipp, M.; Müller, U.; Rioboo, R.J.; Ostermeyer, M.; Sanctuary, R.; Müller-Buschbaum, P.; Krüger, J.K. Phase instability and molecular kinetics provoked by repeated crossing of the demixing transition of PNIPAM solutions. Langmuir 2014, 30, 11792–11801. [Google Scholar] [CrossRef] [PubMed]
- Depa, K.; Strachota, A.; Šlouf, M.; Hromádková, J. Fast temperature-responsive nanocomposite PNIPAM hydrogels with controlled pore wall thickness: Force and rate of T-response. Eur. Polym. J. 2012, 48, 1997–2007. [Google Scholar] [CrossRef]
- Thompson, M.O.; Mayer, J.W.; Cullis, A.G.; Webber, H.C.; Chew, N.G.; Poate, J.M.; Jacobson, D.C. Silicon Melt, Regrowth, and Amorphization Velocities During Pulsed Laser Irradiation. Phys. Rev. Lett. 1983, 50, 896–899. [Google Scholar] [CrossRef]
- Hatano, M.; Moon, S.; Lee, M.; Suzuki, K.; Grigoropoulos, C.P. Excimer laser-induced temperature field in melting and resolidification of silicon thin films. J. Appl. Phys. 1999, 87, 36–43. [Google Scholar] [CrossRef]
- Demichelis, F.; Minetti-Mezzetti, E.; Tagliaferro, A.; Tresso, E.; Rava, P.; Ravindra, N.M. Optical properties of hydrogenated amorphous silicon. J. Appl. Phys. 1986, 59, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Rho, Y.; Shou, W.; Hong, S.; Kato, K.; Eliceiri, M.; Shi, M.; Grigoropoulos, C.P.; Pan, H.; Carraro, C.; et al. Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array. ACS Nano 2018, 12, 2231–2241. [Google Scholar] [CrossRef]
- Sarwat, S.G. Materials science and engineering of phase change random access memory. Mater. Sci. Technol. 2017, 33, 1890–1906. [Google Scholar] [CrossRef]
- Lee, B.-S.; Shelby, R.M.; Raoux, S.; Retter, C.T.; Burr, G.W.; Bogle, S.N.; Darmawikarta, K.; Bishop, S.G.; Abelson, J.R. Nanoscale nuclei in phase change materials: Origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe. J. Appl. Phys. 2014, 115, 063506. [Google Scholar] [CrossRef]
- Kalb, J.A.; Spaepen, F.; Wuttig, M. Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. J. Appl. Phys. 2005, 98, 054910. [Google Scholar] [CrossRef]
- Khulbe, P.K.; Hurst, T.; Horie, M.; Mansuripur, M. Crystallization behavior of Ge-doped eutectic Sb_70Te_30 films in optical disks. Appl. Opt. 2002, 41, 6220. [Google Scholar] [CrossRef]
- Ríos, C.; Zhang, Y.; Shalaginov, M.Y.; Deckoff-Jones, S.; Wang, H.; An, S.; Zhang, H.; Kang, M.; Richardson, K.A.; Roberts, C.; et al. Multi-Level Electro-Thermal Switching of Optical Phase-Change Materials Using Graphene. Adv. Photonics Res. 2021, 2, 2000034. [Google Scholar] [CrossRef]
- Wang, Y.; Landreman, P.; Schoen, D.; Okabe, K.; Marshall, A.; Celano, U.; Wong, H.-S.P.; Park, J.; Brongersma, M.L. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Raoux, S.; Burr, G.W.; Breitwisch, M.J.; Rettner, C.T.; Chen, Y.-C.; Shelby, R.M.; Salinga, M.; Krebs, D.; Chen, S.-H.; Lung, H.-L.; et al. Phase-change random access memory: A scalable technology. IBM J. Res. Dev. 2008, 52, 465–479. [Google Scholar] [CrossRef]
- Rudé, M.; Simpson, R.E.; Quidant, R.; Pruneri, V.; Renger, J. Active Control of Surface Plasmon Waveguides with a Phase Change Material. ACS Photonics 2015, 2, 669–674. [Google Scholar] [CrossRef] [Green Version]
- Bez, R.; Gleixner, R.J.; Pellizzer, F.; Pirovano, A.; Atwood, G. Phase Change Memory Cell Concepts and Designs. In Phase Change Materials: Science and Applications; Raoux, S., Wuttig, M., Eds.; Springer US: Boston, MA, USA, 2009; pp. 355–380. ISBN 978-0-387-84873-0. [Google Scholar]
- Phase Change Materials; Raoux, S.; Wuttig, M. (Eds.) Springer US: Boston, MA, USA, 2009; ISBN 978-0-387-84873-0. [Google Scholar]
- Wełnic, W.; Wuttig, M. Reversible switching in phase-change materials. Mater. Today 2008, 11, 20–27. [Google Scholar] [CrossRef]
- Au, Y.-Y.; Bhaskaran, H.; Wright, C.D. Phase-change devices for simultaneous optical-electrical applications. Sci. Rep. 2017, 7, 9688. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xu, L.; Chen, J.; Zhou, L.; Rahman, B.M.A.; Wu, X.; Lu, L.; Xu, Y.; Xu, J.; Song, J.; et al. Ultracompact Si-GST Hybrid Waveguides for Nonvolatile Light Wave Manipulation. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Wu, C.; Yu, H.; Li, H.; Zhang, X.; Takeuchi, I.; Li, M. Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material. ACS Photonics 2019, 6, 87–92. [Google Scholar] [CrossRef]
- Kato, K.; Kuwahara, M.; Kawashima, H.; Tsuruoka, T.; Tsuda, H. Current-driven phase-change optical gate switch using indium–tin-oxide heater. Appl. Phys. Express 2017, 10, 072201. [Google Scholar] [CrossRef]
- Zheng, J.; Fang, Z.; Wu, C.; Zhu, S.; Xu, P.; Doylend, J.K.; Deshmukh, S.; Pop, E.; Dunham, S.; Li, M.; et al. Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater. Adv. Mater. 2020, 32, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, L.; Xu, J.; Wang, N.; Hu, H.; Lu, L.; Rahman, B.M.A.; Chen, J. Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material. Sci. Bull. 2019, 64, 782–789. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Zhu, S.; Xu, P.; Dunham, S.; Majumdar, A. Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters. ACS Appl. Mater. Interfaces 2020, 12, 21827–21836. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, J.; Ling, C.; Zhao, X.; Zhao, Y.; Jin, H. Electric field driven abnormal increase in conductivity of tungsten-doped VO2 nanofilms. Thin Solid Films 2021, 725, 138643–doi10. [Google Scholar] [CrossRef]
- Varri, V.S.A.; Tripathi, D.; Vyas, H.S.; Agarwal, P.; Hegde, R.S. Optically-reconfigurable phase change material nanoantenna-embedded metamaterial waveguide. Opt. Mater. Express 2021, 11, 988–1003. [Google Scholar] [CrossRef]
- Cheng, Z.; Ríos, C.; Pernice, W.H.P.P.; Wright, C.D.; Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 2017, 3, e1700160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petronijevic, E.; Sibilia, C. Thin films of phase change materials for light control of metamaterials in the optical and infrared spectral domain. Opt. Quantum Electron. 2020, 52, 110. [Google Scholar] [CrossRef]
- Rios, C.; Stegmaier, M.; Cheng, Z.; Youngblood, N.; Wright, C.D.; Pernice, W.H.P.; Bhaskaran, H. Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited]. Opt. Mater. Express 2018, 8, 2455. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, J.; Xu, P.; Wang, Y.; Majumdar, A. Ultra-low-power nonvolatile integrated photonic switches and modulators based on nanogap-enhanced phase-change waveguides. Opt. Express 2020, 28, 37265. [Google Scholar] [CrossRef] [PubMed]
- Ríos, C.; Youngblood, N.; Cheng, Z.; Le Gallo, M.; Pernice, W.H.P.P.; Wright, C.D.; Sebastian, A.; Bhaskaran, H. In-memory computing on a photonic platform. Sci. Adv. 2019, 5, eaau5759. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, J.; Youngblood, N.; Li, X.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. Integrated 256 Cell Photonic Phase-Change Memory With 512-Bit Capacity. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yang, X.; Lu, L.; Chen, J.; Rahman, B.M.A.; Zhou, L. Comparison of the phase change process in a GST-loaded silicon waveguide and MMI. Opt. Express 2021, 29, 3503. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N. Erasable Phase-Change Optical Materials. MRS Bull. 1996, 21, 48–50. [Google Scholar] [CrossRef]
- Yamada, N.; Ohno, E.; Akahira, N.; Nishiuchi, K.; Nagata, K.; Takao, M. High Speed Overwritable Phase Change Optical Disk Material. Jpn. J. Appl. Phys. 1987, 26, 61. [Google Scholar] [CrossRef]
- Eilert, S.; Leinwander, M.; Crisenza, G. Phase Change Memory: A New Memory Enables New Memory Usage Models. In Proceedings of the 2009 IEEE International Memory Workshop, Monterey, CA, USA, 10–14 May 2009; pp. 1–2. [Google Scholar]
- Simpson, R.E.; Fons, P.; Kolobov, A.V.; Fukaya, T.; Krbal, M.; Yagi, T.; Tominaga, J. Interfacial phase-change memory. Nat. Nanotechnol. 2011, 6, 501–505. [Google Scholar] [CrossRef]
- Ikuma, Y.; Saiki, T.; Tsuda, H. Proposal of a small self-holding 2*2 optical switch using phase-change material. IEICE Electron. Express 2008, 5, 442–445. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, T. Exploring Phase Change Memory and 3D Die-Stacking for Power/Thermal Friendly, Fast and Durable Memory Architectures. In Proceedings of the 2009 18th International Conference on Parallel Architectures and Compilation Techniques, Raleigh, NC, USA, 12–16 September 2009; pp. 101–112. [Google Scholar]
- Dong, X.; Jouppi, N.P.; Xie, Y. PCRAMsim: System-level performance, energy, and area modeling for Phase-Change RAM. In Proceedings of the 2009 IEEE/ACM International Conference on Computer-Aided Design-Digest of Technical Papers, San Jose, CA, USA, 2–5 November 2009; pp. 269–275. [Google Scholar]
- Lee, B.C.; Ipek, E.; MutIu, O.; Burger, D. Phase change memory architecture and the quest for scalability. Commun. ACM 2010, 53, 99–106. [Google Scholar] [CrossRef]
- Rios, C.; Hosseini, P.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. Tunable Nanophotonic circuits based on phase change materials. In Proceedings of the EPCOS Proceedings, Berlin, Germany, 8–10 September 2013. [Google Scholar]
- Rios, C.; Hosseini, P.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. On-Chip Photonic Memory Elements Employing Phase-Change Materials. Adv. Mater. 2014, 26, 1372–1377. [Google Scholar] [CrossRef] [Green Version]
- Kuramochi, E.; Notomi, M. Optical memory: Phase-change memory. Nat. Photonics 2015, 9, 712–714. [Google Scholar] [CrossRef]
- Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P.P.; Rios, C.; Stegmaier, M.; et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 2015, 9, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Ríos, C.; Youngblood, N.; Wright, C.D.; Pernice, W.H.P.P.; Bhaskaran, H. Device-Level Photonic Memories and Logic Applications Using Phase-Change Materials. Adv. Mater. 2018, 30, 1802435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farmakidis, N.; Youngblood, N.; Li, X.; Tan, J.; Swett, J.L.; Cheng, Z.; Wright, C.D.; Pernice, W.H.P.; Bhaskaran, H. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv. 2019, 5, eaaw2687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Youngblood, N.; Ríos, C.; Cheng, Z.; Wright, C.D.; Pernice, W.H.; Bhaskaran, H. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 2019, 6, 1. [Google Scholar] [CrossRef]
- Bhaskaran, H.; Cheng, Z.; Rios, C.A.; Youngblood, N.; Wright, C.D.; Pernice, W.H. On-chip phase-change photonic memory and computing. In Proceedings of the Active Photonic Platforms IX, San Diego, CA, USA, 24 August 2017. [Google Scholar]
- Song, J.-F.; Luo, X.-S.; Lim, A.E.-J.; Li, C.; Fang, Q.; Liow, T.-Y.; Jia, L.-X.; Tu, X.-G.; Huang, Y.; Zhou, H.-F.; et al. Integrated photonics with programmable non-volatile memory. Sci. Rep. 2016, 6, 22616. [Google Scholar] [CrossRef]
- Taghinejad, H.; Abdollahramezani, S.; Eftekhar, A.A.; Fan, T.; Hosseinnia, A.H.; Hemmatyar, O.; Dorche, A.E.; Gallmon, A.; Adibi, A. ITO-based microheaters for reversible multi-stage switching of phase-change materials: Towards miniaturized beyond-binary reconfigurable integrated photonics. arXiv 2020, arXiv:2003.04097. [Google Scholar]
- Gemo, E.; Faneca, J.; Carrillo, S.G.-C.; Baldycheva, A.; Pernice, W.H.P.; Bhaskaran, H.; Wright, C.D. A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices. J. Appl. Phys. 2021, 129, 110902. [Google Scholar] [CrossRef]
- Marković, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2020, 2, 499–510. [Google Scholar] [CrossRef]
- Miscuglio, M.; Sorger, V.J. Photonic tensor cores for machine learning. Appl. Phys. Rev. 2020, 7, 031404. [Google Scholar] [CrossRef]
- Hughes, T.W.; Minkov, M.; Shi, Y.; Fan, S. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica 2018, 5, 864. [Google Scholar] [CrossRef]
- Burr, G.W.; Shelby, R.M.; Sebastian, A.; Kim, S.; Kim, S.; Sidler, S.; Virwani, K.; Ishii, M.; Narayanan, P.; Fumarola, A.; et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2017, 2, 89–124. [Google Scholar] [CrossRef]
- Tan, J.Y.S.; Cheng, Z.; Li, X.; Youngblood, N.; Ali, U.E.; Wright, C.D.; Pernice, W.H.P.; Bhaskaran, H. Monadic Pavlovian associative learning in a backpropagation-free photonic network. arXiv 2020, arXiv:2011.14709. [Google Scholar]
- Song, S.; Miller, K.D.; Abbott, L.F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 2000, 3, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Caporale, N.; Dan, Y. Spike Timing–Dependent Plasticity: A Hebbian Learning Rule. Annu. Rev. Neurosci. 2008, 31, 25–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, B.; Alibart, F. Neuromorphic Computing Based on Emerging Memory Technologies. IEEE J. Emerg. Sel. Top. Circuits Syst. 2016, 6, 198–211. [Google Scholar] [CrossRef]
- Wright, C.D.; Au, Y.-Y.; Aziz, M.M.; Bhaskaran, H.; Cobley, R.; Rodriguez-Hernandez, G.; Hosseini, P.; Pernice, W.H.P.; Wang, L. Novel applications possibilities for phase-change materials and devices. In Proceedings of the EPCOS Proceedings, Berlin, Germany, 8–10 September 2013. [Google Scholar]
- Wu, C.; Yu, H.; Lee, S.; Peng, R.; Takeuchi, I.; Li, M. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Karpov, M.; Gehring, H.; Li, X.; Stappers, M.; Le Gallo, M.; Fu, X.; Lukashchuk, A.; Raja, A.S.; et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 2021, 589, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, L.; Xu, J.; Lu, L.; Chen, J.; Rahman, B.M.A. All-optical synapses based on silicon microring resonators actuated by the phase change material Ge2Sb2Te5. In Proceedings of the Conference on Lasers and Electro-Optics, Washington, DC, USA, 5–10 May 2019; p. STh4H.2. [Google Scholar]
- Guo, X.; Xiang, J.; Zhang, Y.; Su, Y. Integrated Neuromorphic Photonics: Synapses, Neurons, and Neural Networks. Adv. Photonics Res. 2021, 2000212. [Google Scholar] [CrossRef]
- Deng, L. The MNIST Database of Handwritten Digit Images for Machine Learning Research. IEEE Signal Process. Mag. 2012, 29, 141–142. [Google Scholar] [CrossRef]
- Chakraborty, I.; Saha, G.; Roy, K. Photonic In-Memory Computing Primitive for Spiking Neural Networks Using Phase-Change Materials. Phys. Rev. Appl. 2019, 11, 014063. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, S.G.C.; Gemo, E.; Li, X.; Youngblood, N.; Katumba, A.; Bienstman, P.; Pernice, W.; Bhaskaran, H.; Wright, C.D. Behavioral modeling of integrated phase-change photonic devices for neuromorphic computing applications. APL Mater. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Youngblood, N.; Zhou, W.; Feldmann, J.; Swett, J.; Aggarwal, S.; Sebastian, A.; Wright, C.D.; Pernice, W.; Bhaskaran, H. On-chip Phase Change Optical Matrix Multiplication Core. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 7.5.1–7.5.4. [Google Scholar]
- Zhou, L.; Zhang, H.; Lu, L.; Chen, J.; Zhou, Z.; Rahman, B.M.A. Ultra-Compact Multi-Level Optical Switching with Non-Volatile GST Phase Change. In Proceedings of the 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), Fukuoka, Japan, 7–11 July 2019; pp. 1–3. [Google Scholar]
- Sanchez, L.; Lechago, S.; Gutierrez, A.; Sanchis, P. Analysis and Design Optimization of a Hybrid VO2/Silicon 2 × 2 Microring Switch. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Markov, P.; Marvel, R.E.; Conley, H.J.; Miller, K.J.; Haglund, R.F.; Weiss, S.M. Optically Monitored Electrical Switching in VO 2. ACS Photonics 2015, 2, 1175–1182. [Google Scholar] [CrossRef]
- Briggs, R.M.; Pryce, I.M.; Atwater, H.A. Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Opt. Express 2010, 18, 11192. [Google Scholar] [CrossRef] [PubMed]
- Ryckman, J.D.; Diez-Blanco, V.; Nag, J.; Marvel, R.E.; Choi, B.K.; Haglund, R.F.; Weiss, S.M. Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators. Opt. Express 2012, 20, 13215. [Google Scholar] [CrossRef] [PubMed]
- Nag, J.; Ryckman, J.D.; Hertkorn, M.T.; Choi, B.K.; Haglund, R.F., Jr.; Weiss, S.M. Ultrafast Compact Silicon-Based Ring Resonator Modulators Using Metal-Insulator Switching of Vanadium Dioxide; Witzigmann, B., Henneberger, F., Arakawa, Y., Osinski, M., Eds.; SPIE OPTO: San Francisco, CA, USA, 2010. [Google Scholar]
- Zheng, J.; Khanolkar, A.; Xu, P.; Colburn, S.; Deshmukh, S.; Myers, J.; Frantz, J.; Pop, E.; Hendrickson, J.; Doylend, J.; et al. GST-on-silicon hybrid nanophotonic integrated circuits: A non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express 2018, 8, 1551. [Google Scholar] [CrossRef]
- Abdollahramezani, S.; Hemmatyar, O.; Taghinejad, H.; Krasnok, A.; Kiarashinejad, Y.; Zandehshahvar, M.; Alù, A.; Adibi, A. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 2020, 9, 1189–1241. [Google Scholar] [CrossRef]
- Wang, X.; Qi, H.; Hu, X.; Yu, Z.; Ding, S.; Du, Z.; Gong, Q. Advances in Photonic Devices Based on Optical Phase-Change Materials. Molecules 2021, 26, 2813. [Google Scholar] [CrossRef]
- Jain, P.; Tanaka, D.; Tsuda, H. Mach Zehnder interferometer optical switch using phase-change material. In Proceedings of the 2012 International Conference on Photonics in Switching (PS), Ajaccio, France, 11–14 September 2012; pp. 1–3. [Google Scholar]
- Kruger, B.A.; Joushaghani, A.; Poon, J.K.S. Design of electrically driven hybrid vanadium dioxide (VO_2) plasmonic switches. Opt. Express 2012, 20, 23598. [Google Scholar] [CrossRef]
- Rudé, M.; Pello, J.; Simpson, R.E.; Osmond, J.; Roelkens, G.; van der Tol, J.J.G.M.; Pruneri, V. Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Appl. Phys. Lett. 2013, 103, 141119. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.T. CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition. Opt. Lett. 2014, 39, 3997. [Google Scholar] [CrossRef]
- Joushaghani, A.; Jeong, J.; Paradis, S.; Alain, D.; Stewart Aitchison, J.; Poon, J.K.S. Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors. Opt. Express 2015, 23, 3657. [Google Scholar] [CrossRef]
- Diana, L.D.S.; Juan, F.C.; Escutia, A.R.; Kilders, P.S. Ultra-compact electro-absorption VO2–Si modulator with TM to TE conversion. J. Opt. 2017, 19, 035401. [Google Scholar] [CrossRef]
- Wong, H.M.K.; Helmy, A.S. Performance Enhancement of Nanoscale VO2 Modulators Using Hybrid Plasmonics. J. Light. Technol. 2018, 36, 797–808. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Ghosh, S.; Zhang, H.; Zhou, L.; Rahman, B.M.A. Design, optimization, and performance evaluation of GSST clad low-loss non-volatile switches. Appl. Opt. 2019, 58, 8687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, J.; Bai, W.; Han, Y.; He, X.; Zhang, J.; Huang, J.; Chen, D.; Xu, S.; Xie, W. Chipscale plasmonic modulators and switches based on metal–insulator–metal waveguides with Ge2Sb2Te5. J. Nanophotonics 2019, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Faneca, J.; Bucio, T.D.; Gardes, F.Y.; Baldycheva, A. O-band N-rich silicon nitride MZI based on GST. Appl. Phys. Lett. 2020, 116, 093502. [Google Scholar] [CrossRef]
- Ríos, C.; Du, Q.; Zhang, Y.; Popescu, C.-C.; Shalaginov, M.Y.; Miller, P.; Roberts, C.; Kang, M.; Richardson, K.A.; Gu, T.; et al. Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials. arXiv 2021, arXiv:2105.06010. [Google Scholar]
- Jeyaselvan, V.; Pal, A.; Anil Kumar, P.S.; Selvaraja, S.K. Thermally-induced optical modulation in a vanadium dioxide-on-silicon waveguide. OSA Contin. 2020, 3, 132. [Google Scholar] [CrossRef]
- Seo, G.; Kim, B.-J.; Ko, C.; Cui, Y.; Lee, Y.W.; Shin, J.-H.; Ramanathan, S.; Kim, H.-T. Voltage-Pulse-Induced Switching Dynamics in $ \hbox{VO}_{2}$ Thin-Film Devices on Silicon. IEEE Electron Device Lett. 2011, 32, 1582–1584. [Google Scholar] [CrossRef]
- Jerry, M.; Shukla, N.; Paik, H.; Schlom, D.G.; Datta, S. Dynamics of electrically driven sub-nanosecond switching in vanadium dioxide. In Proceedings of the 2016 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 12–13 June 2016; pp. 26–27. [Google Scholar]
- Shibuya, K.; Ishii, K.; Atsumi, Y.; Yoshida, T.; Sakakibara, Y.; Mori, M.; Sawa, A. Switching dynamics of silicon waveguide optical modulator driven by photothermally induced metal-insulator transition of vanadium dioxide cladding layer. Opt. Express 2020, 28, 37188. [Google Scholar] [CrossRef]
- Madaras, S.E.; Creeden, J.A.; Lahneman, D.J.; Harbick, A.; Beringer, D.B.; Qazilbash, M.M.; Novikova, I.; Lukaszew, R.A. Dynamics of the blue pump-induced ultrafast insulator-to-metal transition and relaxation in VO2/TiO2 and VO2/TiO2:Nb thin films. Opt. Mater. Express 2020, 10, 1393. [Google Scholar] [CrossRef]
- Haddadpour, A.; Nezhad, V.F.; Yu, Z.; Veronis, G. Highly compact magneto-optical switches for metal-dielectric-metal plasmonic waveguides. Opt. Lett. 2016, 41, 4340. [Google Scholar] [CrossRef]
- Piao, X.; Yu, S.; Park, N. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt. Express 2012, 20, 18994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H.; Soref, R.; Mu, J.; Majumdar, A.; Li, X.; Huang, W.-P. Simulations of Silicon-on-Insulator Channel-Waveguide Electrooptical 2 × 2 Switches and 1 × 1 Modulators Using a Ge2Sb2Te5 Self-Holding Layer. J. Light. Technol. 2015, 33, 1805–1813. [Google Scholar] [CrossRef]
- Liang, H.; Soref, R.; Mu, J.; Li, X.; Huang, W.-P. Electro-optical phase-change 2 × 2 switching using three- and four-waveguide directional couplers. Appl. Opt. 2015, 54, 5897. [Google Scholar] [CrossRef] [PubMed]
PCM | Complex R.I. (Amorphous) | Complex R.I. (Crystalline) | Transition Temp. | Volatile |
---|---|---|---|---|
GST-225 | 4.6 + 0.18i | 7.2 + 1.9i | 600 °C | No |
Sb2S3 | 2.712 + 0i | 3.308 + 0i | 270 °C | No |
Sb2Se3 | 3.285 + 0i | 4.050 + 0i | 200 °C | No |
GSST | 3.325 + 0.00018i | 5.083 + 0.35i | 250 °C | No |
VO2 | 2.75 + 0.4i | 2.1 + 1.3i | 68 °C | Yes |
Si | 3.4858 + 0i | 3.487 + 0i | 677 °C | No |
Category | Pros | Cons | Used for Photonic app. | Used for Integrated Photonic app. |
---|---|---|---|---|
Chalcogenide | Fast switching, nonvolatile | High transition temperature, lossy | √ | √ |
Transition metal oxide | Low transition temperature, volatile, fast switching | Require constant energy, lossy | √ | √ |
Organic | Low transition temperature | Low melting point, slower response, easily combustible | × | × |
Silicon | Ease of fabrication, ease of integration, low loss | No refractive index contrast at IR, Highest transition temperature | √ | × |
Year | PCM | Main Features | All Optical | Speed | Footprint | Power |
---|---|---|---|---|---|---|
2012 [10] | GST | Si3N4 ring resonator with GST patch | √ | - | - | - |
2014 [111] | GST | Si3N4 ring resonator with GST patch | √ | - | - | - |
2015 [113] | GST | Si3N4 multiple ring resonators with GST patches coupled to a single waveguide | √ | 500 ps | 0.25 µm2 | 480 fJ |
2018 [114] | GST | Si3N4 Photonic Memories and Logic Operations using PWM for switching of PCM. Logic “OR” and “NAND” implemented | √ | - | - | - |
2018 [115] | GST | Si3N4 | × | 505 ns | - | 16 pJ |
2021 [25] | GSST | Photonic integrated memory with accuracy up to 93% | × | <1 ps | <4 µm2 | - |
Year | PCM | Main Features | All Optical | Speed | Footprint | Power |
---|---|---|---|---|---|---|
2017 [117] | GST | Si3N4-based synapse, with 21 levels on a single waveguide; Implemented with multiple patches of GST on straight waveguide | √ | - | - | - |
2019 [99] | GST | Direct scalar multiplication with a single integrated memory cell; Matrix multiplication with multiple PCM cells | √ | 200 ns | - | 180 pJ |
2019 [18] | GST | Synapses for supervised and unsupervised self-learning; Implemented with waveguides and waveguide crossings with PCM on top | √ | 200 ns | - | 710 pJ |
2020 [100] | GST | 512 bit in-memory computing; Saves 16 × 16 grayscale image with 2-bit resolution | √ | - | 1000 × 2400 µm2 | 110 pJ, 200 pJ, 230 pJ, 350 pJ |
2021 [131] | GST | Photonic convolutional neural network with photonic computing core through PMMC devices | √ | 1 kHz | - | - |
2021 [46] | Sb2S3 and GST | Low-energy artificial synapse Nonlinear activation function Accuracy >90% | √ | 20 ps | - | 0.1 µJ |
2021 [132] | GST | Integrated photonic tensor core for parallel convolutional processing | √ | 1012 MAC per second | - | 17 fJ/MAC |
Year | PCM | Main Features | All Optical | Speed | Footprint | Insertion Loss |
---|---|---|---|---|---|---|
2010 [142] | VO2 | Ring resonator-based modulator 1 | √ | - | 2 µm, 5 µm | 2 dB |
2012 [143] | VO2 | Ring resonator-based modulator 2 | √ | - | 0.28 µm2 | - |
2012 [148] | GST | 2 × 2 MZI-based switch 2 | √ | - | 93 × 1.7 μm2 | 0.5 dB |
2012 [149] | VO2 | 2 × 2 plasmonic switch 2 | × | 10 s kHz | 5 μm | 1.5 dB |
2013 [150] | GST | Ring resonator-based switch 2 | √ | - | - | 2.5 dB |
2014 [151] | VO2 | Plasmonic modulator | × | - | 9.47 μm | 4.5 dB |
2015 [152] | VO2 | Switch 2 | × | 500 ns | 0.3 × 0.5 µm2 | <3.6 dB |
2017 [153] | VO2 | Modulator 2 | × | 3 ns | 6 µm | 0.3 dB |
2017 [89] | GST | Switch 3 | × | - | 3 µm | 2 dB |
2018 [154] | VO2 | Plasmonic modulators 2 | × | 1GHz | 2 µm2 | 1.4 dB/µm |
2018 [14] | GST | Modulator 4 | × | - | 0.2 µm2 | <2 dB |
2019 [155] | GSST | Switch 2 | √ | - | 5 µm | 0.135 dB |
2019 [156] | GST | Plasmonic modulator for MIM device 2 | √ | 500 ps | 120 nm | 3.6 dB |
2020 [98] | GST | Switch with PCM in a slot 2 | × | - | 0.014 µm2 | <4 dB |
2020 [157] | GST | MZI-based 5 | × | ≈ns | 5 µm2 | 4 dB |
2021 [158] | Sb2Se3 | Ring resonator-based modulator 2 | √ | 800 ns | 11 µm2 | 0.45 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisar, M.S.; Yang, X.; Lu, L.; Chen, J.; Zhou, L. On-Chip Integrated Photonic Devices Based on Phase Change Materials. Photonics 2021, 8, 205. https://doi.org/10.3390/photonics8060205
Nisar MS, Yang X, Lu L, Chen J, Zhou L. On-Chip Integrated Photonic Devices Based on Phase Change Materials. Photonics. 2021; 8(6):205. https://doi.org/10.3390/photonics8060205
Chicago/Turabian StyleNisar, Muhammad Shemyal, Xing Yang, Liangjun Lu, Jianping Chen, and Linjie Zhou. 2021. "On-Chip Integrated Photonic Devices Based on Phase Change Materials" Photonics 8, no. 6: 205. https://doi.org/10.3390/photonics8060205
APA StyleNisar, M. S., Yang, X., Lu, L., Chen, J., & Zhou, L. (2021). On-Chip Integrated Photonic Devices Based on Phase Change Materials. Photonics, 8(6), 205. https://doi.org/10.3390/photonics8060205