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Abstract: Efficient photon-counting imaging in low signal photon level is challenging, especially
when noise is intensive. In this paper, we report a first signal photon unit (FSPU) method to rapidly
reconstruct depth image from sparse signal photon counts with strong noise robustness. The method
consists of acquisition strategy and reconstruction strategy. Different statistic properties of signal
and noise are exploited to quickly distinguish signal unit during acquisition. Three steps, including
maximum likelihood estimation (MLE), anomaly censorship and total variation (TV) regularization,
are implemented to recover high quality images. Simulations demonstrate that the method performs
much better than traditional photon-counting methods such as peak and cross-correlation methods,
and it also has better performance than the state-of-the-art unmixing method. In addition, it could
reconstruct much clearer images than the first photon imaging (FPI) method when noise is severe.
An experiment with our photon-counting LIDAR system was conducted, which indicates that our
method has advantages in sparse photon-counting imaging application, especially when signal to
noise ratio (SNR) is low. Without the knowledge of noise distribution, our method reconstructed the
clearest depth image which has the least mean square error (MSE) as 0.011, even when SNR is as low
as −10.85 dB.

Keywords: photon-counting; efficient imaging; noise robust; first signal photon unit; LIDAR

1. Introduction

Photon-counting imaging with time-correlated single-photon counting technique
(TCSPC) has obtained much research interest due to its high time resolution and sen-
sitivity [1–6]. Among other advantages, photon-counting imaging allows to operate in
extremely low light level environment [7,8], which is of significant help for improving im-
age quality when signal intensity is restricted, such as in remote imaging or low-reflectivity
target imaging. For photon-counting LIDAR applied in such weak echo scenario, it gen-
erally requires a long acquisition time to not only suppress false alarms caused by noise
counts but also to obtain sufficient signal photons to reconstruct clear images. However,
such requirement would obviously limit imaging efficiency.

Methods to promote imaging efficiency (less dwell time) at low light level have been
previously investigated by some researchers, and their methods can generally be divided
into two categories. The first category is to set acquisition time for each pixel fixed and
to use a variety of prior information such as correlation of adjacent pixels or the number
of depth clusters to recover depth image [9–13]. Methods of this category are essentially
not optimal for high efficiency imaging because signal photon levels are actually different
from pixel to pixel, and the fixed acquisition time is either redundant for bright (high
reflectivity) pixels or inadequate for dark (low reflectivity) pixels. The other category is
to scan each pixel with a photon level-dependent time. A well-known method of this
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category is first photon imaging (FPI) [14–16] which utilizes only the first detected photon
to reconstruct images. However, according to its supplementary material [15], in the
conducted experiment, average signal photon and noise photon per pulse were 0.09 and
0.1, respectively. This signal to noise ratio (SNR) is almost 0 dB and is too high to be
achieved for many applications such as daylight imaging or underwater imaging where
solar noise or backscattered noise is high. As would be demonstrated later, FPI is not
suited to low SNR environments where most of its first photon counts would be due to
uninformative noise.

For photon-counting LIDARs used in extremely low signal photon environments with
significant noise, an efficient imaging method with noise robustness is needed. In this
article, we reported a first signal photon unit (FSPU) method which utilizes the different
statistics of noise counts and signal counts to rapidly distinguish signal photon clusters. In
our method, more pulses are transmitted to illuminate dark pixels, while less pulses are
transmitted to bright pixels to maintain both efficiency and image quality. The method
is able to reduce acquisition time sharply compared to a traditional photon-counting
algorithm such as the peak and cross-correlation method, and it also performed better than
FPI, especially in low SNR scenarios. The method does not require any of the background
noise calibrations that need to be conducted in the state-of-the-art photon-efficient methods
by D. Shin et al. [9] and J. Rapp et al. [12]. Both simulation and experiment were conducted
to verify the feasibility of the method.

2. Methods

The overall photon-counting process is the Poisson point process [17], and it could be
viewed as the sum of two independent Poisson processes, that is, signal inhomogeneous
Poisson process and noise homogenous Poisson process. The rate of signal Poisson process
is actually concentrated within pulse width, whereas the rate of noise Poisson process is
flat. Considering the low light level environment, pile-up effect [18] or dead time effect
could be ignored, and, accordingly, the time tags of signal counts and noise counts would
obey Gaussian distribution (we suppose laser pulse waveform is Gaussian) and uniform
distribution, respectively, as Figure 1 indicates.
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Figure 1. Signal and noise Poisson model, λs(t), λn(t) and λ(t) are signal rate, noise rate and total
rate respectively, Z is depth and c is velocity of light.

According to Gaussian theory, the variance of signal time tags would be equal to T2
p

where Tp denotes root mean square (RMS) pulse width. Variance of noise time tags, from
uniform distribution theory, would be 1/12 T2

r , where Tr is the pulse repetition period. For
Tr � Tp, the most evident difference is that the variance in signal counts is rather tiny,
while variance in noise counts is large, which means signal counts tend to cluster together
and noise photons would occupy the whole temporal duration.

Exploiting this characteristic, we developed our FSPU method with two aspects;
acquisition strategy and reconstruction strategy. The essence of acquisition strategy is
straightforward and it can be briefly interpreted that we will not transfer to the next pixel
until the first signal photon unit of current pixel has been distinguished. More specifically,
we define two acquisition parameters, unit size µ and unit range ε. For each laser pulse,
time tags of photon counts, if any, will be registered to system, and when the registered
photon counts are found to be clustered, that is, µ photon counts within ε range in our
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method, we believe these µ counts are all due to signal photons and they are defined as
FSPU, and then we transfer to next pixel. Figure 2 demonstrates our method.
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Reconstruction strategy consists of three steps. The first step is to estimate range time
through maximum likelihood estimation (MLE). Since we believe distinguished FSPU is
caused by signal photons, the MLE of expectation of Gaussian is actually the average of
FSPU as Equation (1) shows.

Ti,j =
1
µ

µ

∑
k=1

tk
i,j (1)

Subscript (i, j) represents the i-th row j-th column pixel and tk
i,j means the time tag

of k-th count of FSPU. The second step is anomaly censorship. Although noise counts
generally would not cluster, there is a chance that noise counts would meet the µ-ε criteria
earlier than signal counts, and thusly they are falsely deemed as FSPU. In this step, for
pixel (i, j), we will calculate the median value Tmed

i,j of its 3× 3 neighborhood and compare
the pixel value Ti,j with this median. If the pixel value is 2Tp away from median, it is
believed to be noisy. The underlying reason is that 95% signal counts would be within
±2Tp around expectation for Gaussian distribution. The noisy pixels would be replaced
with their medians as Equation (2) demonstrates.

Ti,j =

 Ti,j i f
∣∣∣Ti,j − Tmed

i,j

∣∣∣ ≤ 2Tp

Tmed
i,j i f

∣∣∣Ti,j − Tmed
i,j

∣∣∣ > 2Tp
(2)

The third step is total variation (TV) regularization [19,20]. We add a TV penalty term
to our estimated time image, as:

T̂ = argmin
T̂

[(
T̂ − T

)2
+ αTV

(
T̂
) ]

, 0 ≤ T̂ ≤ Tr (3)

where T is an (M, N) size matrix whose i-th row j-th column element is Ti,j and (M, N) is
the size of target image. TV is defined as:

TV
(
T̂
)
=

M−1
∑

i=1

N−1
∑

j=1

√(
T̂i,j − T̂i+1,j

)2
+
(
T̂i,j − T̂i,j+1

)2

+
M−1
∑

i=1

∣∣T̂i,N − T̂i+1,N
∣∣+ N−1

∑
j=1

∣∣T̂M,j − T̂M,j+1
∣∣ (4)

Equation (3) is actually a minimum optimization problem where α is a coefficient to
make a trade-off between MLE data and correlations of adjacent pixels. In experiment, we
used a = 0.5 and its optimal value is the focus of our future research. After acquisition of
reconstructed time image T̂, range image Ẑ is obtained by Ẑ = cT̂/2.
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3. Simulations

To quantify our method performance, we first used the Middlebury dataset [21] to
conduct simulations.

Figure 3a describes the distribution of signal counts numbers per pulse Ii,j and Figure 3b
is the truth range image Zi,j. Signal counts were generated from an inhomogeneous Poisson

process with
Ii,j√
2πTp

exp
(
− (t−2zi,j/c)

2

2T2
p

)
as its rate where RMS width Tp was set as 0.6 ns

to maintain consistency with the laser used in our later experiment. Noise counts were
generated from a homogeneous Poisson process with noise intensity Φ as its rate. Image
size (M, N) and Tr were set to be (139, 111) and 200 ns, respectively, in simulations. Φ were
chosen as 0.01 MHz, 0.1 MHz, 0.25 MHz, 0.5 MHz, 0.75 MHz and 1 MHz, consecutively, to
generate several different noise levels. The mean SNR is evaluated as:

SNR = 10 log10

(
1

M× N
∑ Ii,j

ΦTr

)
(5)
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(b) depth image.

In the simulation, we chose µ and ε to be 5 and 1.2 ns, respectively, which meant
our FSPU was defined as five counts within 1.2 ns temporal width. The reconstruction
processes with Φ = 0.25 MHz are demonstrated in Figure 4.
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67.8 counts per pixel (cpp), 89% of which, however, were noise counts. (a) Step1: Maximum likelihood
estimation, (b) Step2: anomaly censorship, (c) Step3: TV regularization.

We also reconstructed depth images using other methods such as peak, cross-correlation,
unmixing [12] and FPI [13] to compare their performances with our FSPU method. Mean
square error (MSE), defined as:

MSE =
1

MN

M

∑
i=1

N

∑
j=1

(
Ẑi,j − Zi,j

)2 (6)

is utilized as a measure of reconstruction performance where Zi,j is true depth of pixel (i, j).
Efficiency is measured through the number of emitted pulses per pixel (ppp). Less pulses
means less acquisition time and, thus, higher efficiency. Although numbers of pulses for
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each pixel vary for our FSPU and FPI, we can calculate the average number of pulses per
pixel to evaluate efficiency, that is, total emitted pulses number divided by pixel size.

First, we ran our FSPU method, and the number of emitted pulses per pixel was
obtained through above-mentioned calculation. To compare performances of these methods
with a common baseline, we restricted the number of emitted pulses for each pixel of peak,
cross-correlation and unmixing to be identical to our FSPU, which means we restricted the
efficiency of these three methods to be the same as our method. The result is displayed
in Figure 5.
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Figure 5. Performance comparison between methods on different noise levels. (a) 0.01 MHz
noise (SNR = 4.5 dB), 3183 ppp for the first four methods, 335 ppp for FPI; (b) 0.1 MHz noise
(SNR = −5.5 dB), 3313 ppp, 81 ppp; (c) 0.25 MHz noise (SNR = −9.5 dB), 2514 ppp, 37 ppp;
(d) 0.5 MHz noise (SNR = −12.5 dB), 1755 ppp, 20 ppp; (e) 0.75 MHz noise (SNR = −14.3 dB),
1358 ppp, 14 ppp; (f) 1 MHz noise (SNR = −15.5 dB), 1088 ppp 10 ppp.

Although FPI is the most efficient method (FPI only needs 1 cpp to reconstruct images
and therefore the number of emitted pulses is the lowest), it has poor performance, espe-
cially when SNR is low. For example, when SNR is lower than 0 dB, MSEs of FPI are large
and the reconstructed images are almost nonsense because most of its first photon counts
are noisy and they convey no range information. Emitted pulses number for the first four
methods seems much larger than FPI; however, as signal is weak, the signal detections are
essentially as few as several counts. The peak method is a traditional photon-counting
imaging method which chooses the position of histogram peak as rang time. The cross-
correlation method is to make a cross correlation between system instrument response
function (IRF) and histogram, and then it finds the position of maximum value.

From Figure 5, we could see that MSEs of these three fixed acquisition time methods
are larger than our method, which indicates the reconstruction performance of our method



Photonics 2021, 8, 229 6 of 11

is much better. The result is intuitive because the pulses number is identical for each pixel
for these three methods, which does not take pixel differences into consideration.

Actually, when SNR decreases, the image quality of our method worsens, as Figure 5
shows. For low SNR conditions, we can improve the quality by increasing µ or decreasing
ε to further avoid false clusters, although this may result in lower efficiency. Monte
Carlo simulations were conducted to demonstrate how µ and ε influence efficiency and
robustness, as Figure 6 indicates.
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Here we set noise intensity as 0.25 MHz, signal photon number as 0.01 per pulse
and RMS laser width as 0.6 ns. If counts of a FSPU are all due to noise, it is deemed as a
false alarm. From Figure 6, we could notice that larger µ and smaller ε would promote
robustness, but reduce efficiency. In fact, the method allows us to make a trade-off between
efficiency and noise robustness through µ and ε. The method is actually an extension of FPI.
When µ = 1, it would be simplified to be FPI, which only focuses on imaging efficiency.
In addition, background noise calibration is not required in our method. We only need to
know an approximate level of noise to provide information to choose µ and ε, instead of
measuring accurate noise distribution of each pixel which is generally a time-consuming
task. Experience shows µ = 5 and ε = 2Tp would be reliable choices for a variety
of scenarios.

4. Experiments

To explore the performance of the method in a real imaging environment, we carried
out experiments in a laboratory. The photon-counting LIDAR system is designed as
Figure 7 demonstrates.

Laser (CryLaS FDSS532) emits pulses at the fixed repetition rate of 10 KHz. Mirror
1 deflects the laser beam at 90◦ into a linear polarizer. As the laser beam is linearly polarized
from the laser, rotating the polarizer can adjust pulse energy afterwards. Two lenses, L1
and L2, are jointly used as beam expander to lower down laser divergence. A beam splitter
deflects 1% beam into a PIN photodiode, the signal from which serves as start baseline. The
remaining 99% beam continues its travel through a perforated mirror and then emits out to
scenes of interest by two galvo scanning mirrors (Thorlabs GVS012). The back reflected
echo photons enter the system in the same way and as the reflected beam is diffusely
scattered, most of it would be deflected by the PERM into the receiving part. NBF moves
away noise photons which are out of emitting wavelength. Eventually, the echo photons
are coupled into a multimode fiber that connects to the Gm-APD (Micro Photon Devices
PDM series $PD-050-CTC-FC whose photon detection efficiency η is about 42% for 532 nm
wavelength and dead time is 77 ns) at the other end. A gate of 200 ns was utilized to block
system back-reflection light.
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Figure 7. Illustration of our photon-counting experiment. LA, laser; M, mirror; LP, linear polarizer; L,
lens; BS, beam splitter; PIN, pin photodiode; PERM, perforated mirror; NBF, narrow bandpass filter;
FH, fiber head; MMF, multimode fiber; Gm-APD, Geiger mode avalanche photodiode; GSM, galvo
scanning mirror. Scene of interest includes a mannequin, a football and a box.

A football, a man-made mannequin, a box and the background wall were about 4.0 m,
5.5 m, 5.8 m and 6.1 m away from the front of our photon-counting LIDAR, respectively.
The setup was placed in dark laboratory environment and an incandescent lamp with
adjustable illumination was utilized as the source of noise. Details of the experiment
are included in Appendix A. During the experiment, the echo level was extremely low.
The signal counts level, on average, was about 0.0074 per pulse which meant that every
135 pulses would only generate 1 signal count. Three noise levels, the corresponding SNR
of which were −5.14 dB, −8.35 dB and −10.85 dB, were achieved through the adjustment
of the lamp. The result of the experiment is demonstrated in Figure 8.
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Acquisition of the ground truth depth image and signal-noise evaluation processes
are available in Appendix A. From the result, our method shows better MSEs compared
to others. FPI, without any doubt, is the most efficient method, but it suffers much larger
error to be almost noninformative. Results of the experiment have the same tendency as
simulation. For the same total acquisition time (which means the same efficiency), our
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method could recover higher quality depth image, which, on the other hand, reveals that to
obtain the same quality image, our method would require much less time. The experiment
data and code are provided as we show in the Supplementary Material.

It is worth noting that MSEs of the unmixing method are also tiny, almost the same
as our FSPU method. However, the unmixing method needs accurate noise levels to
reconstruct clear images, while our method does not require such information. In this
experiment, noise levels were evaluated beforehand and if noise levels are unknown, the
unmixing method would have much worse reconstruction quality.

5. Discussion and Conclusions

In conclusion, we reported an efficient and noise robust photon-counting imaging
method which is specifically suitable for low signal and high noise environments such as
daylight imaging or underwater imaging. The method exploits the statistical difference
that signal would cluster while noise would decentralize, in order to distinguish signal
counts rapidly. The acquisition time of each pixel is a photon level-dependent variable and
background noise calibration is not needed any more. The method is an extension of FPI
and it outperforms the mainstreaming photon-counting methods in low SNR scenarios.
By introducing two acquisition parameters µ and ε, the method allows users to make a
trade-off between efficiency and robustness. For example, when SNR is low, larger µ and
smaller ε would be helpful to avoid noise, although acquisition time might be longer. More
importantly, the method does not need noise calibrations. Although it is not mentioned in
the paper, the method has the ability to recover reflectivity images with the elapsed pulse
number of each pixel. However, the elapsed pulse number is not only related to reflectivity,
but also to noise level, and there is no such a mature theory or analytical solution to settle
this problem, which is the priority of our future work.
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com/article/10.3390/photonics8060229/s1.
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Appendix A

To keep the primary article concise, details of the experiment, data format and recon-
struction processing are provided in this appendix.

Appendix A.1 Details of Experiment

Stage 1 (none): First, we turned on the laser with the lamp off, as Figure A1a shows,
and rotated the polarizer to set the intensity of signal photons to an extremely low level
to simulate weak echo. Then, we started our imaging of 100 × 100 pixels with 2 s acquisi-
tion time for each pixel (namely 20 K pulses) and data was collected through SIMINICS
(FT1020) time correlated single photon counter (TCSPC) as photon_counts_data_none in
the Supplementary Material. Since the lamp was off, photon counts were almost assumed

https://www.mdpi.com/article/10.3390/photonics8060229/s1
https://www.mdpi.com/article/10.3390/photonics8060229/s1
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to be due to signal, and using this dataset we reconstructed depth image as ground truth
image, which is represented in the next section. Thereafter, we fixed the polarizer to keep
the echo level unchanged. Then, we aimed to scan the scene with different noise levels.

Stage 2 (low): We adjusted the illumination of the lamp to low intensity, as Figure A1b
shows. We raster scanned the scenes with the same 2 s acquisition time for each pixel and
the same scanning resolution, and registered every photon count. A photon count dataset
for low noise intensity was therefore acquired, which is named photon_counts_data_low
in the Supplementary Material.

Stage 3 (middle): Similarly, we adjusted the illumination of the lamp to middle
intensity, as Figure A1c shows. We also raster scanned the scenes with the same 2 s
acquisition time for each pixel and the same scanning resolution, and registered every
photon count. A photon count dataset for middle noise intensity was therefore acquired,
which is named photon_counts_data_mid in the Supplementary Material.

Stage 4 (high): In the same way, we adjusted the illumination of the lamp to high
intensity, as Figure A1d shows. We also raster scanned the scenes with the same 2 s
acquisition time for each pixel and the same scanning resolution, and registered every
photon count. A photon count dataset for high noise intensity was therefore acquired,
which is named photon_counts_data_high in the Supplementary Material.
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Appendix A.2 Evaluation of Signal and Noise Level

Before our reconstruction, we needed to quantify the levels of signal and noise. The signal
level can be evaluated by finding the number of photon_counts_data_none minus the number
of detector dark counts. The detector’s dark count is 100 Hz according to its specification sheet
which is 4 K for the whole dataset with consideration of 200 ns gate time, 20 K accumulation
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pulses and (100, 100) pixel size. Consequently, the overall signal counts number is estimated
as 1.49 M. On average, for each pixel, the signal count level is 0.00744 per pulse, which means
that more than 134 pulses would generate only one signal count.

Since we fixed a linear polarizer to keep the echo level unchanged, the noise count
number of photon_counts_data_low can be simply evaluated through the counts of pho-
ton_counts_data_low minus previously obtained signal counts. Similar evaluations have
also been applied to photon_counts_data_mid and photon_counts_data_high. The result
indicated that the noise levels (with the consideration of photon detection efficiency) were
0.29 M, 0.61 M and 1.08 M, respectively, and their corresponding SNRs were −5.14 dB,
−8.35 dB and −10.85 dB.

Appendix A.3 Ground Truth Depth Image

The dataset of photon_counts_data_none was utilized to recover the ground truth
image because it is assumed to include only a few of dark noise counts. First, we filtered
out dark noise counts using a straightforward median-like pixel-wise method. For each
pixel, we calculated the median of its counts and compared every count with this median.
If count time is 2Tp away from the median (Tp is RMS pulse width of IRF), this count is
believed to be a dark noise count, and therefore would be abandoned. After dark noise filter,
we recovered the ground truth depth image, simply using the mean of unfiltered counts.
Figure A2 demonstrates depth images reconstructed from photon_counts_data_none with
and without dark counts filter processing.
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Figure A2. Depth image from dark experiment dataset. (a) Reconstruction using the mean of counts without dark noise
counts filtering. (b) Reconstruction using the mean of counts with dark noise counts filtering.

Appendix A.4 Reconstruction Process

In this experiment, we used the same data set for our FSPU method and other methods
to evaluate their performances. For our reconstruction process, we added photon counts
from the dataset one-by-one, and when FSPU was discovered, we transferred to next pixel
data. FPI operated in similar way to only use the first photon count of each pixel. After our
FSPU method, average emitted pulses per pixel ℵ could be obtained and for each pixel,
we only included photon counts generated by first ℵ pulses to reconstruct depth images
with peak, cross-correlation and unmixing methods to maintain the same efficiency (same
baseline) for performance comparison.

Appendix A.5 Dataset Format

There are four experiment datasets and one SNR dataset provided in our Supplemen-
tary Material. They are .m files which are readable with Matlab. Each experiment dataset
has two (100, 100) cell arrays which represent time and synchronization information under
different noise levels for each pixel. SNR contains information of evaluated signal level
and noise levels.
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