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Abstract: In this paper, a trench-assisted low-bending-loss large-mode-field-area multi-core fiber
with air hole is proposed, which can achieve dual-mode transmission. The influence of structural
parameters on fiber performance is analyzed systematically, and the structure of the trench, with a
lower refractive index than the cladding, is also analyzed and optimized. By adjusting the structural
parameters, the effective mode field area of the fundamental mode can reach 2003.24 um2 at 1550 nm,
and when the bending radius is 1 cm, the bending loss is 2.57 × 10−3 dB/m. The practical implemen-
tation of the proposed fiber is feasible using existing fabrication technology and is applicable to the
transmission of large-capacity optical communication systems and high-power lasers.

Keywords: dual-mode; low-bending-loss; trench-assisted; large-mode-field-area; multi-core fiber

1. Introduction

The advent of the “Internet +” era and the 5G era have put forward higher require-
ments for the high speed and high bandwidth of optical communication networks. Ultra-
high-speed, large-capacity, and ultra-long-distance transmission has become the future
trend. The conventional single-mode single-core fiber (SM-SCF) is gradually approaching
its 100 Tb/s transmission limit due to the limitation of the nonlinear effect [1]. The rapid
development of communication technologies such as wavelength division multiplexing
(WDM) and polarization multiplexing (PDM) enables mode division multiplexing (MDM)
based on few-mode fibers to be used to increase channel transmission capacity [2]. In-
creasing the mode field area can reduce the nonlinear effect of the fiber, but it will also
increase the number of transmittable modes in the fiber and bring about bending loss.
Therefore, low-bending loss and large-mode area few-mode fibers have important research
significance in high-power optical communication devices [3].

In recent years, fiber lasers have developed rapidly. In order to overcome the limitation
of fiber laser power improvements such as the fiber nonlinear effect and fiber damage, the
method of increasing the mode field area can be used to overcome the nonlinear effect.
The strong coupling multi-core fiber (MCF) increases the mode field area (MFA) of the
fiber by introducing the lateral coupling of the core, thereby reducing the nonlinear effect.
Therefore, it is often used in fiber lasers and amplifiers [4]. But multi-core fibers have a
higher bending loss [5]. However, the reduction of the bending loss (BL) is conducive to
improving the stability and output efficiency of the fiber laser source [6,7]. Adding air
holes and a trench in cladding can effectively reduce the bending loss.

Commonly used fiber structures for achieving a large mode field and low bending
loss include: photonic crystal fiber, trench-assisted fiber, and multi-core fiber. The photonic
crystal fiber has a large mode field area and good bending resistance. However, the
structure is complex and asymmetric, and the technological level is high and welding
is difficult. Usually, the effective mode field area can reach 794 um2, and the bending
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loss is 0.064 dB/m, when the bending radius is 15 cm [8]. The trench-assisted fiber has
good bending resistance. However, due to process limitations, the width and depth of the
submerged layer will be limited. The fiber can not only support ultra-low bending loss
(0.052 dB/turn when bending radius R = 5 mm), but also support an effective mode field
area of up to 260 um2 at a working wavelength of 1.55 um [9,10].

Multi-core optical fiber has the characteristics of a symmetrical structure distribution,
simple design, flexible parameter adjustment, and large mode field area. However, large
mode field multi-core optical fiber often has a higher bending loss. The fiber can generally
transmit with a low bending loss (less than 1.0 dB/m when the bending radius R = 0.34 m),
and the effective area is as high as 1331 um2 [11–15].

There is a mutually restrictive relationship between the bending loss of the optical
fiber and the mode field diameter (mode field area). The smaller the mode field diameter,
the better the light can be confined, thus reducing the bending loss of the fiber. But if the
mode field diameter of the fiber is too small, there will be serious nonlinear effects under
high power conditions [16]. Therefore, the two must be considered comprehensively.

A trench-assisted low-bending-loss large-mode-field-area multi-core fiber (TA-LBL-
LMFA MCF) with an air hole structure is proposed in this paper that can realize dual-mode
transmission. The MFA of the fundamental mode of the fiber can reach 2003.24 um2. When
the bending radius is 1 cm, BL can be as low as 2.57 × 10−3 dB/m. Using the existing
fabrication techniques, the practical implementation of the proposed fiber is feasible.

2. Optical Fiber Structure and Theoretical Analysis

The fiber structure is shown in Figure 1. The yellow part is the central core and the
gray part is the silica cladding. The blue part is a trench with a lower refractive index (RI)
than the cladding. This structure adds 10 cores (green part) to the traditional hexagonal
19-core optical fiber structure (pink part), removes the cores on both sides of the 19-core
optical fiber, and adds air holes and a trench in the cladding. The green part, yellow part,
and pink part constitute the core area.
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Figure 1. Schematic diagram of optical fiber cross section.

The diameter of the fiber cladding is dclad = 125 um, the refractive index of the fiber cladding
nclad = 1.444, the refractive index of the air hole is the refractive index of air nair = 1.000, the
refractive index of the central core is ncenter, and the refractive index of the other cores is ncore.
The refractive index difference between the center core and the cladding is ∆ncenter = ncenter −
nclad; ∆n = ncore − nclad is the refractive index difference between the core and the cladding; Λ is
the distance between the core and the core, Λair = 14 um is the spacing between the air holes,
and dcenter is the diameter of the central core. The diameter of the other cores is d, the diameter
of the air hole is dair = 7 um, and the refractive index of the trench is ntrench. ∆n1 = nclad − ntrench,
which is the refractive index difference between cladding and the trench; Wtrench is the thickness
of the trench layer, and Ltrench is the distance between the trench layer and the central core. The



Photonics 2021, 8, 251 3 of 11

structural parameters are composed of seven parameters: Λ, d, ∆n, dcenter, ∆ncneter, Wtrench, and
Ltrench.

This paper is mainly based on the finite element method (FEM) software to analyze
the fiber structure [17].

The refractive index of the beam propagating in a specific mode changes with the
wavelength and the geometric structure of the waveguide. This is called the effective
refractive index neff of the mode. The conduction of specific mode in optical fiber needs to
satisfy the conduction mode condition of the optical waveguide theory: neff < nclad < ncore.
Otherwise, the mode will be cut off and does not exist in the fiber. The effective refractive
index neff calculation formula can be expressed as [18]:

ne f f = Re
(

β

k0

)
. (1)

Among these figures, β is the propagation constant, the Re is the real part of the whole,
the wave number in vacuum is k0 = 2π/λ, and λ is the working wavelength.

The electromagnetic field of each mode along the cross section of the fiber is called the
mode field. An optical fiber with a large mode field area can suppress the nonlinear effect
in the optical fiber. The effective mode field area Aeff can be expressed as [19]:

Ae f f =

∫
(EE∗dA)2∫
(EE∗)2dA

(2)

where E represents the electric field of the mode, and E* represents the conjugate complex
number of the electric field of the mode.

When the fiber is bent in the positive direction of the x-axis, and the equivalent
refractive index distribution of the fiber cross-section is [20]:

n(x, y) = n0(x, y)

√
1 +

2x
Re f f

. (3)

Among them, n(x, y) is the equivalent refractive index of the fiber after bending, and
n0(x, y) is the initial refractive index of the fiber. R is the bending radius of the optical
fiber along the positive x-axis. When the elastic optical correction factor is introduced, the
equivalent bending radius Reff = 1.28R.

The calculation formula of fiber bending loss α can be expressed as [20]:

a = − 20π

ln10
IM(β) ≈ −8.686

2π

λ
IM
(

ne f f

)
(4)

where IM represents the imaginary part, and neff represents the effective refractive index of
the fiber.

3. Analysis and Optimization of Optical Fiber Structure Parameters

The fiber structure can effectively destroy the circular symmetrical structure of the
traditional 19-core optical fiber. It cuts off the higher-order modes (TE01, TM01), leaving
two degenerate fundamental modes (HE11) and second-order modes (HE21), as shown in
Figure 2. In addition, the 10 fiber cores increase the lateral coupling of the fiber, which
significantly increases the mode field area of the fiber. The effective refractive index of
the cladding is reduced by adding air holes and grooves in the cladding. As a result, the
refractive index difference between the core and the cladding is increased, and the BL is
significantly reduced.
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3.1. Analysis of Three Structural Parameters Λ, d, and ∆n

For this paper, we conducted research on the basis of strict dual-mode transmission.
Λ, d, and ∆n three structural parameters were analyzed. The working wavelength λ was set
at 1550 nm, and the initial structure parameter was set as Λ = 15 um, d = 3 um, ∆n = 0.003,
dcenter = d, ∆ncenter = 0.003, Wtrench = 5.5 um, Ltrench = 52 um, ∆n1= 0.004.

The result of analyzing the influence of the structural parameter Λ on neff and Aeff
is shown in Figure 3. To realize dual-mode transmission and cut high-order modes of
optical fiber, its effective refractive index should be less than nclad. Figure 3a shows that
the transmission mode can be adjusted by modifying Λ. If dual-mode transmission is to
be realized, Λ should be greater than or equal to 11.5 um. Figure 3b shows that as Λ goes
from 10 um to 15 um, the Aeff of HE11 grows from 1451 um2 to 2201 um2 and then drops to
1996 um2, and finally reaches the maximum value at 14.5 um; in addition, the Aeff of HE21

grows from 1219 um2 to 1717 um2. From the above discussion, it can be concluded that
14.5 um is the best choice for Λ.
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When Λ is 14.5 um, the results of analyzing the influence of structure parameter d
on neff and Aeff are shown in Figure 4. Figure 4a shows that as d increases, the effective
refractive index of each mode also increases. If d is less than or equal to 3.3 um, then the
fiber realizes dual-mode transmission. It can be seen from Figure 4b that as d increases
to 3.4 um, the Aeff of HE11 rises to the maximum value of 2032 um2, and the Aeff of HE21

decreases from 1706 um2 to 1616 um2. However, due to the limitation of dual-mode
transmission conditions, d is the most suitable to be 3.3 um. At this time, the Aeff of
HE11 is 2029 um2, and the Aeff of HE21 is 1632 um2. Optical fiber can achieve dual-mode
transmission, but also has a large Aeff.
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When d is 3.3 um, the effect of ∆n on neff and Aeff is shown in Figure 5. Figure 5a shows
that with the increase of ∆n, the neff of TE01 and TM01 also increase. In order to ensure
dual-mode transmission, ∆n should be less than or equal to 0.00315. It can be seen from
Figure 5b that the maximum Aeff of HE11 at 3.1 um is 2031 um2 for ∆n, and the Aeff of HE21

at this time is 1622 um2. In order to ensure that the fundamental mode obtains a larger
mode field area, ∆n is selected as 0.003.
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3.2. Analysis of Structural Parameters of Central Core

In order to enhance the core’s ability to confine light, the central core diameter dcenter is
increased to reduce the central core refractive index ∆ncenter, thereby reducing the bending
loss. This part analyzes the dcenter and ∆ncenter structure parameters of the center core and
initializes the center core structure parameters to ∆ncenter = 0.001 and dcenter = 3 um.

Based on the optimization of the above structural parameters, the influence of dcenter
on neff and Aeff is studied, as shown in Figure 6. Figure 6a shows that the effective refractive
index of the higher-order modes TE01, TM01 is around 1.444, intersecting with ncl at
7.2 um. To ensure dual-mode transmission, dcenter should be less than 7.2 um. As shown
in Figure 6b, HE11 has the largest Aeff at 4.8 um in dcenter, which is about 2039 um2 and the
Aeff of HE21 has been stable around 1622 um2, so 4.8 um is the best choice for dcenter.
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When the dcenter is 4.8 um, the influence of ∆ncenter on neff and Aeff is shown in Figure 7.
Figure 7a shows that TE01, TM01, and ncl intersect at 0.002. To ensure dual-mode transmission,
∆ncenter must be restricted within 0.002.
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The greater the refractive index of the central core of the optical fiber, the stronger its ability
to confine light, but the mode field area will decrease. It can be seen from Figure 7b that when
∆ncenter exceeds 0.002, the Aeff of HE11 decreases rapidly. The Aeff of HE21 is stable at 1622 um2,
and the Aeff of HE11 is 2002 um2 at 0.002. ∆ncenter is selected as 0.002 as the best, which not only
has a large mode field area, but also has a better ability to bind light.

4. Bending Characteristic Analysis

This part studies the effect of R on the Aeff and BL of HE11 and HE21 when the working
wavelength is 1550 nm.

When the bending radius is 1.5 cm, the mode field and electric field will deviate from
the core area to the direction of the trench as shown in Figure 8, resulting in a reduction in
the mode field area and an increase in the bending loss. In order to prevent the electric field
from deviating to the trench, a circle of air holes is added in the middle of the cladding. The
air holes have a lower refractive index, which can effectively prevent the electric field from
deviating to the trench. At the same time, it reduces the refractive index of the cladding
and the bending loss is reduced.
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The two polarization states of a mode have the same changing trend and similar
size, so the two polarization states are almost overlapped. Figure 9a shows that when
R increases from 1 cm to 19 cm, the Aeff of HE11 and HE21 will also increase. After the
bending radius is greater than 11 cm, the Aeff of HE11 and HE21 tends to be stable, around
2100 um2 and 1600 um2. Figure 9b shows that as R increases from 1 cm to 6 cm, the BL
of HE11 and HE21 will also decrease. When the bending radius is 1.5 cm, the BL of the
two modes is less than 10−3 dB/m. The fiber has very low bending loss. In the case of no
bending, the Aeff of HE11 is 2003.24 um2 and the Aeff of HE21 is 1686.71 um2. Therefore, the
optical fiber has good bending insensitivity.
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Table 1 is a comparison table between this article and other recent work and literature.

Table 1. A comparison table with other recent work and literature.

Article Description

[21] Mode area of 2622 um2 at a bend radius of 20 cm can be achieved. Bending loss can be reduced to
about 0.092 dB/m at 1550 nm.

[17] When the bending radius is 20 cm, the effective mode area of the fiber can reach 914 um2 at 1.06 um,
and loss ratio between lowest-HOMs and fundamental mode is larger than 100.

[22] Mode field area of the fundamental mode can reach 1916.042 um2 at 1550 nm., and when the
bending radius is 1.4 cm, the bending loss is 2.96 × 10−3 dB/m.

This article Mode field area of the fundamental mode can reach 2003.24 um2, and when the bending radius is
1 cm, the bending loss is 2.57 × 10−3 dB/m at 1550 nm.
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5. Structural Optimization of the Trench

Adding trench in the cladding can effectively reduce the bending loss of the optical
fiber and improve the bending resistance of the optical fiber. However, the bending loss of
the optical fiber and the mode field area are mutually restrictive, so the two parts must be
taken into consideration at the same time in the design. In order to balance the relationship
between the bending loss and the mode field area, this paper defines the performance
factor PI [23] of the fiber, and the expression is:

PI =
BL

Ae f f
. (5)

PI is used to measure the trade-off between BL and Aeff. When Aeff increases and BL
decreases, PI will decrease, and the comprehensive performance of the fiber will be better.

This section provides analysis and optimization of the Ltrench and ∆n1 parameters of
the trench. We used PI to evaluate the comprehensive performance of the optical fiber.
Wtrench has little effect on the Aeff of each mode, and the larger the thickness, the smaller the
bending loss. Therefore, the larger the Wtrench, the better the comprehensive performance of
the fiber. However, Wtrench is limited by the diameter of the cladding layer to a maximum
of 5.5 um.

When the Wtrench is 5.5 um, the influence of the Ltrench on the Aeff and PI of the fiber under
the condition of a 1.5 cm bending radius is shown in Figure 10. From Figure 10a, it can be seen
that the Aeff of HE11 drops rapidly at 53.9 um, and the Aeff of HE21 slightly rises. When the
Ltrench exceeds 53.8 um, the trench will exceed the cladding and the structure will be disordered,
resulting in a sudden change in the curve. It can be seen from Figure 10b that with the increase
of Ltrench, the PI of HE11 first drops and then rises rapidly, with a minimum value at 53.8 um,
while the PI of HE21 is relatively stable. So, at 53.8 um, the fiber has the best comprehensive
performance.
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When Ltrench is 53.8 um, the influence of ∆n1 on Neff and PI is shown in Figure 11.
Figure 11a shows that with the increase of ∆n1, Aeff of the two modes firstly decreases, then
increases, and finally stabilizes. In Figure 11b, the PI of the fiber decreases with the increase
of ∆n1. This indicates that the larger the ∆n1, the better the comprehensive performance of
the fiber. Due to the limitation of the manufacturing process, ∆n1 cannot be too large, and
is usually set to 0.004.
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In summary, the final optimized parameters are as follows: Λ = 14.5 um, d = 33 um,
∆n = 0.0031, dcenter = 4.8 um, ∆ncenter = 0.002, Wtrench = 5.5um, Ltrench = 53.8 um, ∆n1 = 0.004.

6. Conclusions

A dual-mode TA-LBL-LMFA MCF with air hole structure is investigated in this paper.
By removing the core on both sides of the traditional 19-core fiber, the fiber can destroy the
circular symmetry structure of traditional 19-core fiber and cut off the high-order modes
TE01 and TM01 with circular symmetry. Adding a circle of air holes at the periphery of
the core area can confine the mode field in the core area effectively. Also, adding a trench
that is lower than the refractive index of the cladding at the periphery of the air hole can
effectively reduce the BL. The introduction of 10 cores into the silica region between the
19 cores increases the lateral coupling in the core area and increases the mode field area.
In this way, a large mode field dual-mode transmission with low bending loss is realized.
Λ = 14.5 um, d = 33 um, ∆n = 0.0031, dcenter = 4.8 um, ∆ncenter = 0.002, Wtrench = 5.5 um,
Ltrench = 53.8 um, and ∆n1 = 0.004 are the optimized parameters. At this time, the Aeff of the
optical fiber HE11 can reach 2003.24 um2. When the bending radius R is 1 cm, the bending
loss BL is 2.57 × 10−3 dB/m. Potential applications are anticipated in the transmission of
large-capacity optical communication systems and high-power lasers.
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