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Abstract: In this paper, we consider the comparative formation of perfect optical vortices in the
non-paraxial mode using various optical elements: non-paraxial and parabolic toroidal vortex lenses,
as well as a vortex axicon in combination with a parabolic lens. The theoretical analysis of the action
of these optical elements, as well as the calculation of caustic surfaces, is carried out using a hybrid
geometrical-optical and wave approach. Numerical analysis performed on the basis of the expansion
in conical waves qualitatively confirms the results obtained and makes it possible to reveal more
details associated with diffraction effects. Equations of 3D-caustic surfaces are obtained and the
conditions of the ring radius dependence on the order of the vortex phase singularity are analyzed.
In the non-paraxial mode, when small light rings (several tens of wavelengths) are formed, a linear
dependence of the ring radius on the vortex order is shown. The revealed features should be taken
into account when using the considered optical elements forming the POV in various applications.

Keywords: caustics; perfect optical vortices; toroidal vortex lens

1. Introduction

Recently, the attention of researchers has been attracted by the “perfect” optical
vortices (POVs) having a ring radius independent of its vortex number [1–4]. It is well
known that classical beams such as Laguerre–Gaussian beams [5–8] and higher-order
Bessel beams [9–13] have a central light ring, the size of which is varied with the vortex
number. This feature may be undesirable in some applications, for example, when coupling
different vortex beams into a fiber with a fixed annular profile [14]. Therefore, the main
advantage of POVs over other vortex beams is precisely in the fixed radius of the light
ring. Note that recently, various modifications of POVs have appeared, which do not
only have a ring structure. For example, elliptical POVs [14–18] in the form of different
curves [19–23] and arrays [24–28], POVs with fractional optical vortex [29,30], as well as
vector POVs [31–36].

POVs are also used for optical capture and manipulation of microparticles [2,3,37,38]
for free-space and underwater optical communication [39–41], for high-resolution plasmonic-
structured illumination microscopy [42], in the study of the noncollinear interaction of
photons having orbital angular momentum (OAM) in spontaneous parametric down-
conversion processes [43], for laser surface structuring [44], and for rotation speed detection
of a spinning object based on the rotational Doppler effect [45].

As a rule, the Fourier transformation of Bessel beams or lens-axicon doublets [4,43,46–49]
is used to generate such optical beams. In Reference [49], a comparison of POV generation
by means of different elements was investigated as follows: using a combination of a lens
with an amplitude-phase element with a transmission function proportional to a Bessel
function, an optimal phase element with a transmission equal to the sign function of a
Bessel function, and a spiral axicon. In fact, these elements are similar, since the axicon is
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often used to generate Bessel beams [50–52]. A different approach for POV generation was
suggested in [26,27] using curved fork gratings.

In this paper, we consider another type of optical element, namely a toroidal lens that
corresponds to a non-paraxial lens with radial displacement. The toroidal lens, instead of
focusing to a point, focuses the incident radiation into a light ring [53,54]. Thus, the toroidal
lens acts similarly to a lens-axicon doublet; however, it has certain advantages since it
avoids the aberration problems associated with axicon’s tip fabrication [55]. Recently, the
attention of researchers has been attracted by the toroidal wave front, which is studied in
both the framework of the paraxial wave theory [56] and using the geometrical-optical
approach [57,58].

The vortex toroidal lens, as well as the vortex axicon combined with a classic lens,
allows for the formation of POVs.

Note, if the ring formed in the focal plane has a small radius, then at large orders of
the optical vortex, the POV ceases to be “perfect”. It was shown in [59] that for a POV there
is a dependence on the order of the optical vortex, especially for optical systems with a low
numerical aperture. A similar effect was noted in another work [60].

In this paper, we consider the formation of POV in a non-paraxial mode using toroidal
vortex lenses, as well as a vortex axicon in combination with a parabolic lens. The theoretical
analysis of the action of these optical elements is carried out on the basis of a hybrid
geometrical-optical and wave approach [20,60–62]. The asymptotic method for calculating
the Kirchhoff integral is based on the geometric-optical approach with a finite (non-zero)
ray thickness. This makes it possible to detect not only geometrical-optical caustics, but
also areas of high intensity. Non-paraxial numerical analysis performed on the basis of the
expansion in conical waves [63–65] qualitatively confirms the results obtained and makes
it possible to reveal more details associated with diffraction effects. Equations of 3D-caustic
surfaces are obtained and the conditions for the dependence of the ring radius on the
order of the vortex phase singularity are analyzed. The obtained results can be useful in
various applications using non-paraxial POVs, such as optical trapping and manipulation,
vortex-based multiplexing, and laser structuring.

2. Parametric System of Equations for Calculating a 3D-Caustic Surface

In optics, a caustic is the envelope of light rays reflected or refracted by a curved
surface or object [66,67]. The main property of caustic surfaces (or lines) is that near these
surfaces the intensity of the light field increases sharply (in the approximation of geometric
optics, the intensity tends to infinity) [68,69].

Caustics connected with a curvature of the filed wavefront provide understanding to
how the light redistribution evolves [70–73]. Therefore, caustics are used to analyze the
features of structured laser beams, such as non-diffracting beams of various types [74–79],
generalized Gaussian beams [80,81], accelerating and autofocusing beams [82–86], and
vortex beams [20,61,62,87].

A general representation of the caustic surface was obtained for vortex optical ele-
ments, the eikonal function of which can be represented in a separable form:

Φ(ρ, θ) = P(ρ) +
m
k

θ (1)

where (ρ, θ) are polar coordinates, k = 2π/λ is the wavenumber of laser radiation with the
wavelength λ, and m is the order of the vortex phase singularity.

Calculation of the Kirchhoff integral by the stationary phase method [20,61,62] leads
to a parametric equation for calculating the 3D-caustic surface:

r(ρ) =
√

A2(ρ) + B2(ρ),
ϕ(ρ, θ) = θ + tan−1[B(ρ)/A(ρ)],
z(ρ, θ) =

√
S2(ρ) + 2ρ · r(ρ) cos[θ − ϕ(ρ, θ)]− ρ2 − r2(ρ) .

(2)
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where
A(ρ) = ρ + Pρ(ρ)S(ρ),

B(ρ) = m
k

S(ρ)
ρ ,

(3)

where Pρ(ρ) is the derivative of the radial term P(ρ) of the eikonal function (1), and the
function S(ρ) is the solution to the quadratic equation:

aS2(ρ) + bS(ρ) + c = 0 (4)

with coefficients determined by the following expressions:

a = ρ3Pρ(ρ)Pρρ(ρ)−
(m

k
)
,

b = ρ3
[
ρPρρ(ρ) +

(
1− P2

ρ (ρ)
)

Pρ(ρ)
]
+
(m

k
)2[2ρPρ(ρ)− ρ2Pρρ(ρ)

]
,

c = ρ4
[
1− P2

ρ (ρ)
]
−
(m

k
)2

ρ2.
(5)

where Pρρ(ρ) is the second derivative of P(ρ).
As follows from the above expressions, the effect of the vortex singularity is noticeable

only if the ratio m / k is not too small, i.e., the value of the optical vortex m is commensurate
with the wave number k. For conventional optical elements (several millimeters in size)
used for the visible wavelength range, k is quite large (has a value of several thousand);
therefore, the effect of the vortex singularity manifests itself only at very large values of m.
It is this fact that determines the existence of the “perfect” optical vortices. However, if we
consider microelements (several microns in size), then the effect of a vortex singularity with
the value of m in several tens is already significant. In this work, for a clear demonstration
of this effect, we consider microelements (i.e., elements with a size of several tens of
microns).

Further, we use the general formulas of this section to analyze different optical ele-
ments, especially those that generate the POV.

3. Caustic Surface for Axisymmetric Optical Elements Forming a Light Ring

Let us first consider axisymmetric optical elements that form an annular intensity
distribution in a certain transverse plane. For axisymmetric optical elements (m = 0),
caustic Equation (2) is simplified [88,89]:{

r(ρ) = ρ + Pρ(ρ)S(ρ),

z(ρ) =
√

S2(ρ)− [ρ− r(ρ)]2,
(6)

where S(ρ) is one of the solutions of quadratic Equation (4):

S±(ρ) = −b±
√

b2−4ac
2a ,

a = ρ3Pρ(ρ)Pρρ(ρ),
b = ρ3

[
ρPρρ(ρ) +

(
1− P2

ρ (ρ)
)

Pρ(ρ)
]
,

c = ρ4
[
1− P2

ρ (ρ)
]
.

(7)

After simplifications, instead of Equation (7), we obtain:

S±(ρ) =
−
[
ρPρρ(ρ) +

(
1− P2

ρ (ρ)
)

Pρ(ρ)
]
±
[
ρPρρ(ρ)−

(
1− P2

ρ (ρ)
)

Pρ(ρ)
]

2Pρ(ρ)Pρρ(ρ)
. (8)

One solution in Equation (8) corresponds to an off-axis caustic, and the second one
corresponds to the axial caustic.
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In particular, the “+” sign corresponds to the off-axis caustic:

S+(ρ) = −
1− P2

ρ (ρ)

Pρρ(ρ)
(9)

in which the surface is described by the following parametric equation: r+(ρ) = ρ + Pρ(ρ)S+(ρ) = ρ−
[
1− P2

ρ (ρ)
]

Pρ(ρ)P−1
ρρ (ρ),

z+(ρ) =
√

S2
+(ρ)− [ρ− r+(ρ)]

2 =
[
1− P2

ρ (ρ)
]3/2

P−1
ρρ (ρ).

(10)

The sign “−” corresponds to the axial caustic:

S−(ρ) = −
ρ

Pρ(ρ)
(11)

in which surface is described by the following parametric equation:

r−(ρ) = ρ + Pρ(ρ)S−(ρ) =
= ρ− ρP−1

ρ (ρ)Pρ(ρ) = 0 ,

z−(ρ) =
√

S2
−(ρ)− [ρ− r−(ρ)]

2 =

=

√[
ρP−1

ρ (ρ)
]2
− ρ2 = ρ

[
1− P2

ρ (ρ)
]1/2

P−1
ρ (ρ) .

(12)

It clearly follows from Equation (12) that the axial caustic is located on the optical axis,
since its radius r−(ρ) = 0. Note that there are no caustics when 1− P2

ρ (ρ) < 0.
The convenience of the obtained Expressions (9)–(12) lies in the fact that the construc-

tion of caustic surfaces is sufficient to know the first and second derivatives of the eikonal
function.

We further consider specific optical elements below.

3.1. Non-Paraxial Toroidal Lens

A toroidal lens is an optical element that focuses into a ring. The complex transmission
function of the toroidal lens focusing into a ring with a radius ρ0 at a distance z = f is
described by the following expression:

τtor(ρ) = exp
(
−ik

√
(ρ− ρ0)

2 + f 2
)

(13)

Obviously, at ρ0 = 0, Expression (13) is reduced to an ordinary non-paraxial lens
focusing to a point on the optical axis. Let us obtain analytical expressions for the caustic
surface for the toroidal lens (13) using Equations (9)–(12).

Let us write the eikonal function of the optical element (13):

Φtor(ρ) = P(ρ) = −
√
(ρ− ρ0)

2 + f 2 (14)

and write out the first and second derivatives:

Pρ(ρ) = − (ρ−ρ0)√
(ρ−ρ0)

2+ f 2
= (ρ−ρ0)

P(ρ) ,

Pρρ(ρ) = − f 2

((ρ−ρ0)
2+ f 2)

3/2 = f 2

P3(ρ)
.

(15)
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Then, for an off-axis caustic, we obtain: rtor,+(ρ) = ρ−
[
1− P2

ρ (ρ)
]

Pρ(ρ)P−1
ρρ (ρ) = ρ0,

ztor,+(ρ) =
[
1− P2

ρ (ρ)
]3/2

P−1
ρρ (ρ) = f ,

(16)

It follows from Expression (16) that the off-axis caustic is a ring with the radius ρ0 at
the focal length f. At ρ0 = 0 the caustic consists of one point on the axis at the focal length.

For axial caustics:{
rtor,−(ρ) = 0,

ztor,−(ρ) = ρ
[
1− P2

ρ (ρ)
]1/2

P−1
ρ (ρ) = f ρ

(ρ−ρ0)
,

(17)

Note that axial caustics are formed when ρ > ρ0.
Figure 1 shows the results of diffraction of a plane beam by a toroidal lens and

the formation of a ring in the focal plane for the following parameters: λ = 633 nm,
ρ0 = 30 µm, and f = 100 µm.
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Figure 1. Calculation of the formation of a field by the toroidal lens (13) under illumination with a
plane beam.

The calculation was performed using the asymptotic method for calculating the
Kirchhoff integral [88,89]. The asymptotic method for calculating the Kirchhoff integral
is based on the geometric-optical approach with a finite (non-zero) ray thickness. This
makes it possible to detect not only geometrical-optical caustics, but also areas of high
intensity. This is a feature of the hybrid approach of the asymptotic calculation method.
For comparison, the results obtained by the method of expansion in conical waves [63–65]
are also shown. This method is accurate and takes into account diffraction effects.

To visualize the formation of high-intensity surfaces that correspond to caustic sur-
faces, Figure 1 shows longitudinal distribution of generated field: amplitude (root of
intensity) to show distribution in more detail and topology (logarithmic scale of intensity)
to show picture analogs to ray tracing. The color matching for all pictures in the gray palette
is as follows: black color for the minimal (zero) value and white color for the maximal
values.
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As can be seen from Figure 1, the off-axis caustic provides the formation of a ring
in the focal plane (marked in Figure 1 by yellow vertical line), and the axial caustic is
responsible for the appearance of a light line on the optical axis, which is formed at a
distance z > f . Note that the structural (caustic) features of the generated field, especially
its longitudinal distribution, are more clearly defined using the asymptotic-geometric
approach, but the fine details and distribution in the focal plane are correctly shown by the
method of expansion in conical waves. Thus, each of the methods allows one to focus on
various features of the generated fields. It is known that the use of a Gaussian illuminating
beam makes it possible to smooth out diffraction effects and emphasize structural features.
Figure 2 shows the results of calculating the formation of a light ring under illumination of
the toroidal lens (shown in Figure 1) by Gaussian beams exp(−r2/σ2) of various radius σ.
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Figure 2 shows that using the asymptotic method we obtain the structure of the field
practically the same for various size of the illuminating beam. The exact method (expansion
in conical waves) shows noticeable differences for a small Gaussian beam (σ = 30 µm)
when the field is paraxial, and a larger Gaussian beam (σ = 50 µm) when the field is
already non-paraxial. Note that, in the latter case, the beam structure calculated by both
methods is very similar.

Note that Expressions (16)–(17), which predict the existence of regions with high
intensity, were obtained from the geometric optics approximation. In this case, these areas
are concentrated near the ring and on the optical axis. Thus, in the geometrical optics
approximation, there should be infinite intensity in these regions. However, light diffraction
introduces significant changes in the intensity pattern. In particular, the calculation (by
exact method) shows the presence of other regions of increased intensity. In addition, the
illuminating beam has an influence, which is difficult to take into account in the framework
of geometric optics. A certain compromise in this case is achieved by using the asymptotic,
in which the transverse size of the beam has a non-zero thickness. In this case, the energy
is redistributed in the vicinity of the caustic and its brightness decreases.

3.2. Parabolic Toroidal Lens

The complex transmission function of a parabolic toroidal lens can be obtained from
Expression (13) provided that the focal length f is large enough:

τtor(ρ) = exp
(
−ik f

√
1 + (ρ− ρ0)

2/ f 2
)
≈ exp

(
−ik f

[
1 +

(ρ− ρ0)
2

2 f 2

])
. (18)

Omitting the constant phase factor exp (−ik f ), we obtain the following expression for
the parabolic toroidal lens:

τptor(ρ) = exp

(
−ik

(ρ− ρ0)
2

2 f

)
(19)

The eikonal function for the parabolic toroidal lens:

Φptor(ρ) = P(ρ) = − (ρ− ρ0)
2

2 f
(20)

The first and second derivatives in this case:

Pρ(ρ) = −
(ρ− ρ0)

f
, Pρρ(ρ) = −

1
f

. (21)

An off-axis caustic surface is described by:
rptor,+(ρ) = ρ−

[
1− P2

ρ (ρ)
]

Pρ(ρ)P−1
ρρ (ρ) = ρ0 +

(ρ−ρ0)
3

f 2 ,

zptor,+(ρ) =
[
1− P2

ρ (ρ)
]3/2

P−1
ρρ (ρ) = − f

[
1− (ρ−ρ0)

2

f 2

]3/2
.

(22)

It follows from Expression (22) that now the off-axis caustic is a certain surface near the
ring with radius ρ0. When ρ0 = 0, the parabolic toroidal lens transforms into an ordinary
parabolic lens, the off-axis caustic of which is a “caustic beak” surface [61,90]. This is the
main difference between a parabolic (paraxial) lens and a non-paraxial lens.

For the axial caustic, a more complex expression than (17), is also obtained:{
rptor,−(ρ) = 0,

zptor,−(ρ) = ρ
[
1− P2

ρ (ρ)
]1/2

P−1
ρ (ρ) = −

[
f 2 − (ρ− ρ0)

2
]1/2 ρ

(ρ−ρ0)
.

(23)
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Figure 3 shows the simulation results obtained using an asymptotic and accurate
calculation of the plane beam diffraction by the parabolic toroidal lens (19) with the same
parameters as for non-paraxial toroidal lens (13) in Section 3.1.
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As can be seen from a comparison of the simulation results shown in Figures 1 and 3,
the non-paraxial toroidal lens (13) produces a narrower (and therefore brighter) ring of light
than the parabolic lens (19). The appearance of off-axis caustics for these optical elements
is also noticeably different (see Figure 4): for a non-paraxial toroidal lens, this is a thin ring
(the graph of the radial section is the red colored point in Figure 4a), and for a parabolic
toroidal lens, the caustic surface becomes more complex (3D view is shown in Figure 4b).
This is a “caustic beak” distribution, which is characteristic of the caustic of a parabolic
wavefront [90]. In contrast to focusing to an axial point considered in the work [90],
the wavefront considered in our paper is also parabolic, but with a radial displacement.
Therefore, a characteristic distribution is observed along the ring (Figure 4b).
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3.3. Axicon-Lens Doublet

The complex transmission function of parabolic toroidal lens (19) can be represented
in the following form:

τptor(ρ) = exp

(
−ik

(ρ− ρ0)
2

2 f

)
= exp

(
−ik

ρ0
2

2 f

)
exp

(
ik

ρ0

f
ρ

)
exp

(
−ik

ρ2

2 f

)
. (24)

Omitting the constant phase factor exp
[
−ik (ρ0

2/2 f )
]
, we obtain a doublet from the

scattering axicon and the converging parabolic lens:

τlax(ρ) = exp
(

ik
ρ0

f
ρ

)
exp

(
−ik

ρ2

2 f

)
(25)

The eikonal function for doublet (25) is as follows:

Φlax(ρ) = P(ρ) =
ρ0

f
ρ− ρ2

2 f
(26)

The first and second derivatives in this case:

Pρ(ρ) =
ρ0 − ρ

f
, Pρρ(ρ) = −

1
f

. (27)

As can be seen from a comparison of Equations (21) and (27), a parabolic toroidal lens
and an axicon doublet with a parabolic lens are completely analogous.

4. Caustic Surface for Vortex Optical Elements Forming a Light Ring

The results of the previous section showed that axisymmetric optical elements have
two types of caustics—axial and off-axis. It was shown in [20,61,62] that the presence of a
vortex phase singularity leads to a fundamental change in the axial caustic—it becomes
off-axis. Thus, vortex optical elements form two off-axis caustics, which can change the
distribution of the light field. This includes changing the radius of the light ring, i.e., violate
the basic property of POVs. To investigate this, let us write Equation (2) for vortex caustic
surfaces taking into account the factorization of the angular dependence:{

r(ρ) =
√

A2(ρ) + B2(ρ),
z(ρ) =

√
S2(ρ) + 2ρ · r(ρ) cos{tan−1[B(ρ)/A(ρ)]} − ρ2 − r2(ρ).

(28)

As can be seen from Equation (28), the presence of a vortex phase (i.e., m 6= 0) does
not change the axisymmetric character of caustic surfaces but does change their shape.

Using the relation cos [tan−1 (x)] = (1 + x2)
−1/2 instead of Equation (28), we obtain: r(ρ) =

√
A2(ρ) + B2(ρ),

z(ρ) =

√
S2(ρ) + 2ρ · r(ρ)

{
1 + [B(ρ)/A(ρ)]2

}−1/2
− ρ2 − r2(ρ).

(29)

In the general case, Equation (29) for caustic surfaces is rather difficult to analyze. To
get some analytical estimates, we consider two cases: small and large values of m/k.

When m/k is small (m/k < 1), then B(ρ) << A(ρ). In this case, using the expansion
of the root in the Taylor series instead of Equation (29), we can write:

r(ρ) = A(ρ)

√
1 +

(
B(ρ)
A(ρ)

)2
≈ A(ρ) + B2(ρ)

2A(ρ)
,

z(ρ) =

√
S2(ρ)± 2ρr(ρ)

[
1− 1

2

(
B(ρ)
A(ρ)

)2
]
− ρ2 − r2(ρ),

(30)
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where A(ρ) = ρ + Pρ(ρ)S(ρ), B(ρ) = mS(ρ)/kρ, and the “+” sign corresponds to the case
when A(ρ) > 0, and the “−” sign when A(ρ) < 0.

As can be seen from Equation (30), the caustic radius changes even at small orders of
the vortex singularity m (m/k < 1):

r(ρ) ≈ A(ρ) + ∆(ρ), (31)

where A(ρ) corresponds to the radius of the original caustic, and the addition is described
by Equation (32):

∆(ρ) =
m2S2(ρ)

2(kρ)2[ρ + Pρ(ρ)S(ρ)
] (32)

As seen from Equation (32), the changes have a quadratic dependence on the order
of the vortex singularity m. However, they will be very minor as long as the ratio m/k is
small.

If the ratio m/k is large (m/k >> 1), then the caustic radius takes on a completely
different form:

r(ρ) ≈ B(ρ) +
A2(ρ)

2B(ρ)
=

mS(ρ)
kρ

+
kρ
[
ρ + Pρ(ρ)S(ρ)

]2
2mS(ρ)

(33)

It is obvious from Equation (33) that, in this case, the radius will grow linearly with
increasing order m.

Next, we take a closer look at specific optical elements.

4.1. Non-Paraxial Vortex Toroidal Lens

The complex transmission function of a vortex toroidal lens of order m is described by
the following expression:

τtor(ρ, θ) = exp
(
−ik

√
(ρ− ρ0)

2 + f 2 + imθ

)
(34)

Let us write the eikonal function of the optical element (34) in the form (1):

Φtor(ρ, θ) = P(ρ) +
m
k

θ = −
√
(ρ− ρ0)

2 + f 2 +
m
k

θ (35)

Since the eikonal function of the considered elements is factorized (separable) in
radial and angular coordinates, the first and second radial derivatives have the form as in
Equation (15).

Let us write out the coefficients of quadratic Equation (4) in explicit form using
Expression (5) and taking into account the relation P2(ρ) = (ρ− ρ0)

2 + f 2:

a = ρ3 f 2 (ρ−ρ0)
P4(ρ)

−
(m

k
)
,

b = ρ3 f 2

P3(ρ)
[ρ + (ρ− ρ0)] +

ρ

P3(ρ)

(m
k
)2
[
2(ρ− ρ0)

[
(ρ− ρ0)

2 + f 2
]
− ρ f 2

]
,

c = ρ4

P2(ρ)
f 2 −

(m
k
)2

ρ2.

(36)

Using the coefficients in Equation (36), one can numerically obtain solutions S±(ρ) =
(−b ±

√
b2 − 4ac)/2a for all values of ρ. Note, however, that the presence of a vortex

singularity transforms axial caustics into off-axis ones [20,61,62], and, therefore, for a
certain range ρ ∈ [0, ρd], the system in Equation (29) will not have a solution. The allowed
area is determined from Equation (37):

S2(ρ) + 2ρ · r(ρ)
{

1 + [B(ρ)/A(ρ)]2
}−1/2

> ρ2 + r2(ρ) (37)
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Figure 5 shows the view of off-axis caustics for a non-paraxial vortex toroidal lens (34)
at different orders of the vortex phase singularity m. As can be seen, the off-axis caustic
instead of a ring becomes a surface of revolution resembling a cone (Figure 5b).
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Figure 5. Off-axis caustics for non-paraxial vortex toroidal lens (34): (a) comparative graphs of radial
sections when m = 1 (red), m = 5 (green), and m = 10 (blue); (b) 3D view of the caustic at m = 10.

Figure 6 shows the results of calculating the diffraction of a plane beam by a non-
paraxial vortex toroidal lens at m = 10. Since the caustics (Figure 5) are obtained in the
geometrical-optical approximation, the diffraction theory does not guarantee the maximum
intensity on the caustic surface. However, we can see a peculiarity (Figure 6): this surface is
the boundary between light and shadow, which is clearly seen in the topology (logarithmic
scale of intensity), which shows details in analogy to ray tracing.
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Figure 6. Calculation of the field formation by a vortex (m = 10) toroidal lens (34) when illuminated
by a plane beam.

The caustic surface becomes more pronounced when a Gaussian beam is used as
an illuminating beam (Figure 7). When illuminated by a Gaussian beam, the geometric
caustics are more noticeable for two reasons. First, the caustic is formed by the rays coming
from the central part, and the Gaussian beam has the highest intensity precisely in the
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center. Second, in the case of a Gaussian beam, the diffraction effects are minimal. As the
radius of the Gaussian beam increases, the diffraction effect associated with the edge of
the aperture increases. Within the framework of the geometric theory of diffraction, in this
case, "diffraction" rays arise [91,92] and the formation of caustics of "diffraction" rays is
possible.
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by Gaussian beam.

4.2. Analysis of the Effect of the Vortex Phase in a Non-Paraxial Mode

In this paper, we consider the formation of POV not only in the non-paraxial mode,
but also for focal light rings with a small radius (several tens of wavelengths). Note that
if the ring formed in the focal plane has a small radius, then at large orders of the optical
vortex m POV, the POV ceases to be “perfect”.

In Reference [59], it was shown that in order to satisfy the condition for the formation
of a POV, the radius of the ring should be:

ρ0 ≥ ρc =
|m|

k · NA
(38)

where NA is the numerical aperture of the optical system.
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In the paraxial approximation NA ≈ R/ f , therefore, using Equation (38), it is possible
to estimate the maximum value of the vortex order |mmax|, at which the condition for the
formation of the POV will be met:

|mmax| ≤
kRρ0

f
(39)

For the non-paraxial regime considered in our work, the numerical aperture is deter-
mined by the following equation:

NA = sin
[
tan−1(R/ f )

]
(40)

For the parameters used in the calculations (λ = 0.633 µm, ρ0 = 30 µm, f = 100 µm,
R = 80 µm) using Equation (39) we estimate |mmax| ≤ 238 (NA ≈ 0.8), and using
Equation (40) and Equation (38), we estimate |mmax| ≤ 184(NA ≈ 0.62). Both values are
quite large.

Figure 8 shows the results of modeling by the method of expansion in conical waves,
and Figure 9 shows comparative graphs of the cross-sections of the intensity of the light
ring in the focal plane at different values of m. To define the radius of the ring we estimate
position of maximal intensity ρmax (Figure 9). Thus, we calculate: ρmax = 29.99 µm
(m = 0), ρmax = 29.99 µm (m = 1), ρmax = 30.08 µm (m = 5), ρmax = 30.17 µm (m = 10),
ρmax = 30.37 µm (m = 20), ρmax = 31.56 µm (m = 50), and ρmax = 34.34 µm (m = 100).
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The significant sensitivity of non-paraxial POVs to an increase in the optical vortex 
number m  is associated with the non-paraxial nature of the optical elements under 
consideration. This behavior is explained by the analysis performed in Section 4, where it 
is shown that for small orders of the vortex phase singularity m  ( 2m < π λ ), the increase 
in the ring radius will be negligible, and for large values of m  ( 2m >> π λ ), the ring will 
grow linearly with m. For the parameters considered in the calculations, the wave number 

12 10k m−= π λ ≈ μ . Therefore, for 10m < , the radius of the ring practically does not 
change (Figure 9a), and for 10m ≥ , there is a linear increase in the radius with increasing 
m  (Figure 9b). 

4.3. Parabolic Vortex Toroidal Lens 
The complex transmission function of a parabolic vortex toroidal lens has the form: 
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Figure 9. Graphs of the cross-sections of the intensity of the light ring in the focal plane, formed by a
vortex non-paraxial toroidal lens (35) (ρ0 = 30 µm) for different values of m: (a) m = 0 (black), m = 1
(red), m = 5 (green), and m = 10 (blue); (b) m = 0 (black), m = 20 (red), m = 50 (green), and m = 100
(blue).

As can be seen from Figures 8 and 9, for large values of the optical vortex number m,
the radius of the ring increases significantly, and the violation of POV formation occurs
much earlier than predicted by condition (38).

A noticeable increase in the radius of the focal ring for the characteristics under
consideration occurs already at |m| ≥ 10 (Figure 9a,b). Note that the calculation of caustic
surfaces also predicts this (Figure 10a).
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and axial modification) at m = 100.

The significant sensitivity of non-paraxial POVs to an increase in the optical vortex
number m is associated with the non-paraxial nature of the optical elements under con-
sideration. This behavior is explained by the analysis performed in Section 4, where it is
shown that for small orders of the vortex phase singularity m (m < 2π/λ), the increase in
the ring radius will be negligible, and for large values of m (m >> 2π/λ), the ring will
grow linearly with m. For the parameters considered in the calculations, the wave number
k = 2π/λ ≈ 10 µm−1. Therefore, for |m| < 10, the radius of the ring practically does not
change (Figure 9a), and for |m| ≥ 10, there is a linear increase in the radius with increasing
m (Figure 9b).

4.3. Parabolic Vortex Toroidal Lens

The complex transmission function of a parabolic vortex toroidal lens has the form:

τptor(ρ, θ) = exp

(
−ik

(ρ− ρ0)
2

2 f
+ imθ

)
(41)
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and the eikonal function is as follows:

Φptor(ρ, θ) = P(ρ) +
m
k

θ = − (ρ− ρ0)
2

2 f
+

m
k

θ (42)

Taking into account that the first and second derivatives are the same as in Equation (21),
we write down the coefficients of quadratic Equation (4) in the explicit form:

a = ρ3 (ρ−ρ0)
f 2 −

(m
k
)
,

b = ρ3
[
− ρ

f −
(

1−
[
(ρ−ρ0)

f

]2
)

(ρ−ρ0)
f

]
+
(m

k
)2
[
−2ρ

(ρ−ρ0)
f + ρ2

f

]
,

c = ρ4
(

1−
[
(ρ−ρ0)

f

]2
)
−
(m

k
)2

ρ2.

(43)

In the paraxial case, the analysis of the caustic surface in the presence of a phase vortex
singularity is not simplified and, in fact, corresponds to the expressions obtained at the
beginning of Section 4. In this section, we consider numerical calculations in order to clarify
the effect of the number m on the formation of the focal ring.

Figure 11 shows the caustics of a parabolic vortex toroidal lens (41) for different
orders of m. As can be seen, the effect of the vortex phase singularity at small values of
m is insignificant (as well as for the non-paraxial lens considered in Sections 4.1 and 4.2);
therefore, we consider in more detail the effect of high orders of m.
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is a linear increase in the radius of the ring in the focal plane observed, but also its 
noticeable spreading. This is due to the displacement of the plane of formation of the ring 
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Figure 11. Off-axis caustics for a parabolic vortex toroidal lens (41): comparative graphs of radial
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m = 100 (blue); as well as a 3D view of caustics with (c) m = 10 and (d) m = 100.

Figure 12 shows the results of modeling of diffraction of a plane beam on a parabolic
vortex toroidal lens (41) by the method of expansion in conical waves with the same
parameters that were used in Section 3.2 for a non-paraxial lens. Comparison of the
calculation results (Figures 8 and 12) shows that at high orders of m (m/k >> 1), not
only is a linear increase in the radius of the ring in the focal plane observed, but also its
noticeable spreading. This is due to the displacement of the plane of formation of the
ring closer to the plane of the element, which is clearly seen in the longitudinal intensity
patterns (Figure 12, red line). This effect is less pronounced for a non-paraxial vortex
toroidal lens (34) than for the element (41). This fact must be taken into account when using
the considered optical elements that form the POV in various applications.
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5. Conclusions

In this work, a theoretical and numerical study of the formation of perfect optical
vortices in the non-paraxial mode was carried out using various optical elements: non-
paraxial and parabolic toroidal vortex lenses, as well as a vortex axicon in combination
with a parabolic lens. The theoretical analysis of the action of these optical elements, as
well as the calculation of caustic surfaces, was carried out using the asymptotic method for
calculating the Kirchhoff integral, based on the geometric-optical approach with a finite
(non-zero) ray thickness. This makes it possible to detect not only geometrical-optical
caustics, but also regions with high intensity, i.e., caustics of "diffraction" rays. This is
a feature of the hybrid approach of the asymptotic calculation method. More accurate
calculations, taking into account diffraction effects, were performed by the method of
expansion in conical waves.

Note that the structural (caustic) features of the generated field, especially its longi-
tudinal distribution, are more clearly defined using the asymptotic-geometric approach,
and the fine details and distribution in the focal plane are correctly shown by the method
of expansion in conical waves. Thus, each of the methods allows you to focus on various
features of the generated fields.

Equations of 3D-caustic surfaces were obtained and the conditions for the dependence
of the ring radius on the order of the vortex phase singularity awas analyzed. It was shown
that, in the non-paraxial regime, during the formation of small light rings (several tens of
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wavelengths), there is a noticeable influence of the vortex phase singularity. The increase in
the radius of the ring will be negligible only for small orders of the vortex phase singularity
m (m < 2π/λ), and for large values of m (m >> 2π/λ), the ring will grow linearly with
increasing m. In addition, at large values of for a parabolic vortex toroidal lens, a significant
displacement of the plane of formation of the annular distribution closer to the plane of the
element was found. This effect was less pronounced for a non-paraxial vortex toroidal lens.

The revealed features should be taken into account when using the considered op-
tical elements generating the POV in various applications, such as optical trapping and
manipulation, vortex-based multiplexing, and laser structuring.
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