Quantum Optical Aspects of High-Harmonic Generation
Abstract
:1. Introduction
2. General Formulation—Nonperturbative Treatment of the Interaction of a Bound or Free Electron with the Whole Quantized Radiation Field
3. Features of the Strong-Field Quantum Optical Transitions. Connection to the Semi-Classical Approximation
4. Quantum Optical Strong-Field Kramers-Heisenberg Formula for a Nonperturbative Treatment of High-Harmonic Generation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Basic Notions, Notations, and a Brief Summary on Coherent States and Squeezed States
Appendix B. Elimination of the Minimal Coupling Interaction Terms
References
- Gordon, W. Der Comptoneffekt nach der Schrödingerschen Theorie. Z. Für Phys. 1927, 40, 117–133. [Google Scholar] [CrossRef]
- Volkov, D.M. Über eine Klasse von Lösungen der Diracschen Gleichung. Z. Für Phys. 1935, 94, 250–260. [Google Scholar]
- Brown, L.S.; Kibble, T.W.B. Interaction of intense laser beams with electrons. Phys. Rev. 1964, 133, A705–A719. [Google Scholar] [CrossRef]
- Goldman, I.I. Intensity effects in Compton scattering. Phys. Lett. 1964, 8, 103–106. [Google Scholar] [CrossRef]
- Ritus, V.I.; Nikishov, A.I. Quantum electrodynamics of phenomena in intense fields. Works Lebedev Phys. Inst. 1985, 111, 5–278. English translation in J. Sov. Laser Res. 1985, 6, 619–728. (In Russian) [Google Scholar]
- Bergou, J.; Varró, S. Nonlinear scattering processes in the presence of a quantized radiation field: II. Relativistic treatment. J. Phys. A Math. Gen. 1981, 14, 2281–2303. [Google Scholar] [CrossRef]
- Bersons, I.Y. Electron in the quantized field of a monochromatic electromagnetic wave. Zhurnal Éksp. Teor. Fiz. 1969, 56, 1627–1633, (English Translate) Sov. Phys. JETP 1969, 29, 871. [Google Scholar]
- Bergou, J.; Varró, S. Nonlinear scattering processes in the presence of a quantized radiation field: I. Nonrelativistic treatment. J. Phys. A Math. Gen. 1981, 14, 1469–1482. [Google Scholar] [CrossRef] [Green Version]
- Keldish, L.V. Ionization in the field of a strong electromagnetic wave. Zhurnal Éksp. Teor. Fiz. 1964, 47, 1945–1957. [Google Scholar]
- Perelomov, A.M.; Popov, V.S.; Terent’ev, M.V. Ionizationof atoms in an alternating electric field: II. Zhurnal Éksp. Teor. Fiz. 1967, 51, 309. [Google Scholar]
- Popov, V.S. Method of imaginary time for periodical fields. Yad. Fiz. 1974, 19, 1140–1156. (In Russian) [Google Scholar]
- Faisal, F.H.M. Multiple absorption of laser photons by atoms. J. Phys. B At. Mol. Phys. 1973, 6, L89–L92. [Google Scholar] [CrossRef]
- Reiss, H.R. Effect of an intense electromagnetic field on a weakly bound system. Phys. Rev. A 1980, 22, 1786–1813. [Google Scholar] [CrossRef]
- Agostini, P.; Fabre, F.; Mainfray, G.; Petite, G.; Rahman, N.K. Free-Free Transitions Following Six-Photon Ionization of Xenon Atoms. Phys. Rev. Lett. 1979, 42, 1127. [Google Scholar] [CrossRef]
- Chin, S.L.; Farkas, G.; Yergeau, F. Observation of Kr and Xe ions created by intense nanosecond CO2 laser pulses. J. Phys. B At. Mol. Opt. Phys. 1983, 16, L223–L226. [Google Scholar] [CrossRef]
- DiMauro, L.F.; Agostini, P. Ionization dynamics in stronglaser fields. Adv. At. Mol. Opt. Phys. 1995, 35, 79. [Google Scholar]
- Becker, W.; Grasbon, F.; Kopold, R.; Miloševic, D.B.; Paulus, G.G.; Walther, H. Above-threshold ionization: From classical features to quantum effects. Adv. At. Mol. Opt. Phys. 2002, 48, 35. [Google Scholar]
- Popov, V.S. Tunnel and multiphoton ionization of atoms and ions in a strong laser field; Keldish theory. Sov. Phys. Uspekhi 2004, 47, 855–885. [Google Scholar] [CrossRef]
- Bunkin, F.V.; Fedorov, M.V. Bremsstrahlung in a strong radiation field. Zhurnal Éksp. Teor. Fiz. 1965, 49, 1215–1221. [Google Scholar]
- Kroll, N.M.; Watson, K.M. Charged-particle scattering in the presence of a strong electromagnetic wave. Phys. Rev. A 1973, 8, 804–809. [Google Scholar] [CrossRef] [Green Version]
- Weingarsthofer, A.; Holmes, J.K.; Caudle, G.; Clarke, E.M. Direct observation of multiphoton processes in laser-induced free-free transitions. Phys. Rev. Lett. 1977, 39, 269–270. [Google Scholar] [CrossRef]
- Wallbank, B.; Holmes, J.K. Laser-assisted electron-atom collisions. Phys. Rev. A 1993, 48, R2515–R2518. [Google Scholar] [CrossRef]
- Mason, N.J. Laser-assisted electron atom collisions. Rep. Prog. Phys. 1993, 56, 1275–1346. [Google Scholar] [CrossRef]
- Varró, S.; Ehlotzky, F. Remark on polarization effects in small-angle electron scattering by helium atoms in a CO2 laser field. Phys. Lett. A 1995, 203, 203–208. [Google Scholar] [CrossRef]
- Kanya, R.; Morimoto, Y.; Yamanouchi, K. Observation of laser-assisted electron-atom scattering in femtosecond intense laser field. Phys. Rev. Lett. 2010, 105, 123202. [Google Scholar] [CrossRef]
- Morimoto, Y.; Kanya, R.; Yamanouchi, K. Laser-assisted electron diffraction for femtosecond molecular imaging. J. Chem. Phys. 2014, 140, 064201. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, Y.; Kanya, R.; Yamanouchi, K. Light-Dressing Effect in Laser-Assisted Elastic Electron Scattering by Xe. Phys. Rev. Lett. 2015, 115, 123201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherson, A.; Gibson, G.; Jara, H.; Johann, U.; Luk, T.; Mcintyre, I.; Boyer, K.; Rhodes, C. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 1987, 4, 595–601. [Google Scholar] [CrossRef]
- Ferray, M.; L’Huillier, A.; Li, X.F.; Lompre, L.A.; Mainfray, G.; Manus, C. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B At. Mol. Opt. Phys. 1988, 21, L31. [Google Scholar] [CrossRef]
- L’Huillier, A.; Balcou, P. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 1993, 70, 774–777. [Google Scholar] [CrossRef]
- Potvliege, R.M.; Shakeshaft, R. Multiphoton processes in an intense laser field: Harmonic generation and total ionization rates for atomic hydrogen. Phys. Rev. A 1989, 40, 3061–3079. [Google Scholar] [CrossRef]
- Becker, W.; Long, S.; McIver, J.K. Higher-harmonic production in a model atom with short-range potential. Phys. Rev. A 1990, 41, 4112–4115. [Google Scholar] [CrossRef]
- Ehlotzky, F. Harmonic generation in Keldysh-type Models. Il Nuovo Cim. 1992, 14D, 517–525. [Google Scholar] [CrossRef]
- L’Huillier, A.; Balcou, P.; Candel, S.; Schafer, K.J.; Kulander, K.C. Calculation of high-order harmonic-generation processes in xenon at 1064 nm. Phys. Rev. A 1992, 46, 2778–2790. [Google Scholar] [CrossRef]
- Corkum, P.B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 1993, 71, 1994–1997. [Google Scholar] [CrossRef] [Green Version]
- Varró, S.; Ehlotzky, F. A new integral equation for treating high-intensity multiphoton processes. Il Nuovo Cim. 1993, 15D, 1371–1396. [Google Scholar] [CrossRef]
- Lewenstein, M.; Balcou, P.; Ivanov, M.Y.; L’Huillier, A.; Corkum, P.B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 1994, 49, 2117–2132. [Google Scholar] [CrossRef] [PubMed]
- Kuchiev, M.Y.; Ostrovsky, V.N. Quantum theory of high harmonic generation as a three-step process. Phys. Rev. A 1999, 60, 3111–3124. [Google Scholar] [CrossRef] [Green Version]
- Farkas, G.; Tóth, C. Proposal for attosecond light pulse generation using laser induced multiple-harmonic conversion processes in rare gases. Phys. Lett. A 1992, 168, 447–450. [Google Scholar] [CrossRef]
- Papadogiannis, N.A.; Witzel, B.; Kalpouzos, C.; Charalambidis, D. Observation of attosecond light localization in higher order harmonic generation. Phys. Rev. Lett. 1999, 83, 4289–4292. [Google Scholar] [CrossRef]
- Paul, P.M.; Toma, E.S.; Breger, P.; Mullot, G.; Auge, F.; Balcou, P.; Muller, H.G.; Agostini, P. Observation of a train of attosecond pulses from high harmonic generation. Science 2001, 292, 1689–1692. [Google Scholar] [CrossRef] [PubMed]
- Tzallas, P.; Charalambidis, D.; Papadogiannis, N.A.; Witte, K.; Tsakiris, G.D. Direct observation of attosecond light bunching. Nature 2003, 426, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Agostini, P.; DiMauro, L.F. The physics of attosecond light pulses. Rep. Prog. Phys. 2004, 67, 813–855. [Google Scholar] [CrossRef]
- López-Martens, R.; Varjú, K.; Johnsson, P.; Mauritsson, J.; Mairesse, Y.; Saliéres, P.; Gaarde, M.B.; Schafer, K.J.; Persson, A.; Svanberg, S.; et al. Amplitude and phase cotrol of attosecond light pulses. Phys. Rev. Lett. 2005, 94, 033001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sansone, G.; Benedetti, E.; Calegary, F.; Vozzi, C.; Avaldi, L.; Flammini, L.; Poletto, L.; Villoresi, P.; Altucci, C.; Velotta, R.; et al. Isolated single-cycle attosecond pulses. Science 2006, 314, 443–446. [Google Scholar] [CrossRef]
- Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163–234. [Google Scholar] [CrossRef] [Green Version]
- Wirth, A.; Hassan, M.T.; Grguraš, I.; Gagnon, J.A.; Moulet, A.; Luu, T.T.; Pabst, S.; Santra, R.; Alahmed, Z.A.; Azzeer, A.M.; et al. Synthesized light transients. Science 2011, 334, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Luu, T.T.; Garg1, M.; Kruchinin, S.Y.; Moulet, A.M.T.; Hassan, M.T.; Goulielmakis, E. Extreme ultraviolet high-harmonic spectroscopy of solids. Nat. Lett. 2015, 521, 498–502. [Google Scholar] [CrossRef]
- Kühn, S.; Dumergue, M.; Kahaly, S.; Mondal, S.; Füle, M.; Csizmadia, T.; Farkas, B.; Major, B.; Várallyay, Z.; Cormier, E.; et al. The ELI-ALPS facility: The next generation of attosecond sources. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 132002. [Google Scholar] [CrossRef] [Green Version]
- Charalambidis, D.; Chikán, V.; Cormier, E.; Dombi, P.; Fülöp, J.A.; Janáky, C.; Kahaly, S.; Kalashnikov, M.; Kamperidis, C.; Kühn, S.; et al. The Extreme Light Infrastructure—Attosecond Light Pulse Source (ELI-ALPS) project. In Progress in Ultrafast Intense Laser Science XIII; Yamanouchi, H.W.T., Paulus, G.G., Eds.; Springer International Publishing AG: Basel, Switzerland, 2017; pp. 181–218. [Google Scholar]
- Amini, K.; Biegert, J.; Calegari, F.; Chacón, A.; Ciappina, M.F.; Dauphin, A.; Efimov, D.K.; de Morisson Faria, C.F.; Giergiel, K.; Gniewek, P.; et al. Symphony on strong field approximation. arXiv 2018, arXiv:1812.11447v1. [Google Scholar] [CrossRef] [Green Version]
- Miloševic, D.B. Semiclassical approximation for strong-laser-field processes. Phys. Rev. A 2017, 96, 023413. [Google Scholar] [CrossRef]
- Wikmark, H.; Guo, C.; Vogelsang, J.; Smorenburg, P.W.; Coudert-Alteirac, H.; Lahl, J.; Peschel, J.; Rudawski, P.; Dacasa, H.; Carlström, S.; et al. Spatiotemporal coupling of attosecond pulses. Proc. Nat. Acad. Sci. USA 2019, 116, 4779–4787. [Google Scholar] [CrossRef] [Green Version]
- Nayak, A.; Dumergue, M.; Kühn, S.; Mondal, S.; Csizmadia, T.; Harshitha, N.G.; Füle, M.; Upadhyay-Kahaly, M.; Farkas, B.; Major, B.; et al. Saddle point approaches in strong field physics and generation of attosecond pulses. Phys. Rep. 2019, 833, 1–52. [Google Scholar] [CrossRef]
- Van Vleck, J.H. The correspondence principle in the statistical interpretation of quantum mechanics. Proc. Nat. Acad. Sci. USA 1928, 14, 178–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Jain, M.; Tzoar, N. Compton scattering in the presence of coherent radiation. Phys. Rev. A 1978, 18, 538–545. [Google Scholar] [CrossRef]
- Pert, G.J. The behaviour of atomic bound states in very strong electromagnetic fields. J. Phys. B At. Mol. Phys. 1975, 8, L173–L178. [Google Scholar] [CrossRef]
- Basile, S.; Trombetta, F.; Ferrante, G. Twofold symmetric angular distribution in multiphoton ionization with elliptically polarized light. Phys. Rev. Lett. 1988, 61, 2435–2437. [Google Scholar] [CrossRef] [PubMed]
- Basile, S.; Trombetta, F.; Ferrante, G.; Burlon, R.; Leone, C. Multiphoton ionization of hydrogen by a strong multimode field. Phys. Rev. A 1988, 37, 1050–1052. [Google Scholar] [CrossRef] [PubMed]
- Ehlotzky, F. Remarks on Coulomb correction in scattering and ionization in a laser field. Opt. Commun. 1990, 77, 309–311. [Google Scholar] [CrossRef]
- Kramers, H.A. Collected Scientific Papers; North-Holland Publishing Company: Amsterdam, The Netherland, 1956; p. 262. [Google Scholar]
- Henneberger, W.C. Perturbation method for atoms in intense light beams. Phys. Rev. Lett. 1968, 21, 838–841. [Google Scholar] [CrossRef]
- Faisal, F.H.M. Collision of electrons with laser photons in a background potential. J. Phys. B At. Mol. Phys. 1973, 6, L312–L315. [Google Scholar] [CrossRef]
- Gavrila, M. (Ed.) Atoms in Intense Laser Fields; Academic Press, Inc.: San Diego, CA, USA, 1992. [Google Scholar]
- Mittleman, M.H. Introduction to the Theory of Laser-Atom Interactions; Plenum Press: New York, NY, USA, 1993; Chapter 4. [Google Scholar]
- Reed, V.C.; Burnett, K.; Knight, P.L. Harmonic generation in the Kramers-Henneberger stabilization regime. Phys. Rev. A 1993, 47, R34–R37. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.; Faisal, F.H.M. Intense-field many-body S-matrix theory. J. Phys. B At. Mol. Opt. Phys. 2005, 38, R1–R56. [Google Scholar] [CrossRef] [Green Version]
- Faisal, F.H.M. Strong-field S-matrix series with Coulomb wave final state. In Progress in Ultrafast Intense Laser Science XIII; Yamanouchi, H.W.T., Paulus, G.G., Eds.; Springer International Publishing AG: Basel, Switzerland, 2017; pp. 1–13. [Google Scholar]
- Bloch, F.; Nordsieck, A. Notes on the radiation field of the electron. Phys. Rev. 1937, 52, 54–59. [Google Scholar] [CrossRef]
- Glauber, R.J. Some notes on multiple-boson processes. Phys. Rev. 1951, 84, 395–400. [Google Scholar] [CrossRef]
- Schwinger, J. Theory of quantized fields. III. Phys. Rev. 1953, 91, 728–740. [Google Scholar] [CrossRef]
- Varró, S. Theoretical Study of the Interaction of Free Electrons with Intense Light. Ph.D. Thesis, University of Szeged, Szeged, Hungary, 1981. Hung. Phys. J.1983, 31, 399–454. (In Hungarian). [Google Scholar]
- Varró, S. Intensity effects and absolute phase effects in nonlinear laser-matter interactions. In Laser Pulse Phenomena and Applications; Duarte, F.J., Ed.; InTech: Rijeka, Croatia, 2010; Chapter 12; pp. 243–266. [Google Scholar]
- Antoine, P.; L’Hulillier, A.; Lewenstein, M. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 1996, 77, 1234–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varró, S.; Farkas, G. Attosecond electron pulses from interference of above-threshold de Broglie waves. Laser Part. Beams 2008, 26, 9–19. [Google Scholar]
- Varró, S. Entangled photon-electron states and the number-phase minimum uncertainty states of the photon field. New J. Phys. 2008, 10, 053028. [Google Scholar] [CrossRef]
- Varró, S. Entangled states and entropy remnants of a photon-electron system. Phys. Scr. 2010, T140, 014038. [Google Scholar] [CrossRef]
- Varró, S. Symmetric entangled coherent states yield ideal quantum attosecond pulses. In Proceedings of the 27th International Laser Physics Workshop (LPHYS’18), Nottingham, UK, 16–20 July 2018. Unpublished work, 2018. [Google Scholar]
- Gombkötő, A.; Czirják, A.; Varró, S.; Földi, P. Quantum-optical model for the dynamics of high-order-harmonic generation. Phys. Rev. A 2016, 94, 013853. [Google Scholar] [CrossRef] [Green Version]
- Varró, S. A quantum concept of attosecond radiation: The attoquant. In Proceedings of the 7th International Conference on Attosecond Science and Technology (ATTO2019), Szeged, Hungary, 1–5 July 2019. Unpublished work, 2019. [Google Scholar]
- Gombkötő, A.; Varró, S.; Mati, P.; Földi, P. High-order harmonic generation as induced by a quantized field: Phase-space picture. Phys. Rev. A 2020, 101, 013418. [Google Scholar] [CrossRef] [Green Version]
- Gorlach, A.; Neufeld, O.; Rivera, N.; Cohen, O.; Kaminer, I. The quantum-optical nature of high harmonic generation. Nat. Commun. 2020, 11, 4598. [Google Scholar] [CrossRef]
- Gonoskov, I.; Tsatrafyllis, N.; Kominis, I.; Tzallas, P. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation. Sci. Rep. 2016, 6, 32821. [Google Scholar] [CrossRef] [PubMed]
- Tsatrafyllis, N.; Kominis, I.K.; Gonoskov, I.A.; Tzallas, P. High-order harmonics measured by the photon statistics of the infrared driving-field exiting the atomic medium. Nat. Commun. 2017, 8, 15170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsatrafyllis, N.; Kühn, S.; Dumergue, M.; Földi, P.; Kahaly, S.; Cormier, E.; Gonoskov, I.; Kiss, B.; Varjú, K.; Varró, S.; et al. Quantum Optical Signatures in a Strong Laser Pulse after Interaction with Semiconductors. Phys. Rev. Lett. 2019, 122, 193602. [Google Scholar] [CrossRef] [Green Version]
- Theocharis, L.; Lopez-Martens, R.; Haessler, S.; Liontos, I.; Kahaly, S.; Rivera-Dean, J.; Stammer, P.; Pisanty, E.; Ciappina, M.F.; Lewenstein, M.; et al. Quantum-optical spectrometry in relativistic laser–plasma interactions using the high-harmonic generation process: A proposal. Photonics 2021, 8, 192. [Google Scholar]
- Burenkov, I.A.; Tikhonova, O.V. Features of multiphoton-stimulated bremsstrahlung in a quantized field. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 235401. [Google Scholar] [CrossRef]
- Bogatskaya, A.; Volkova, E.; Popov, A. Spontaneous transitions in atomic system in the presence of high-intensity laser field. EPLA 2016, 116, 14003. [Google Scholar] [CrossRef]
- Bogatskaya, A.; Volkova, E.; Popov, A. Spectroscopy of the atomic system driven by high intensity laser field. arXiv 2017, arXiv:1701.05777v1. [Google Scholar]
- Bogatskaya, A.V.; Volkova, E.A.; Popov, A.M. Spontaneous emission ofatoms in a strong laser field. JETP 2017, 125, 587–596. [Google Scholar] [CrossRef]
- Akhiezer, A.I.; Berestetskii, V.B. Quantum Electrodynamics; Interscience Publisher: New York, NY, USA, 1965. [Google Scholar]
- Białynicki-Birula, I.; Białynicki-Birula, Z. Quantum Electrodynamics; Pergamon Press: Oxford, UK; Warszawa, Poland, 1975. [Google Scholar]
- Loudon, R. The Quantum Theory of Light; Clarendon Press: Oxford, UK, 2000. [Google Scholar]
- Schleich, W.P. Quantum Optics in Phase Space; Wiley-VCH: Weinheim, Germany, 2001. [Google Scholar]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Loudon, R.; Knight, P.L. Squeezed light. J. Mod. Opt. 1987, 34, 709–759. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. The Principles of Optics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Cooper, J.W. Photoionization from outer atomic subshells. A model study. Phys. Rev. 1962, 128, 681–693. [Google Scholar] [CrossRef]
- Shiner, A.D.; Schmidt, B.E.; Trallero-Herrero, C.; Corkum, P.B.; Kieffer, J.-C.; Légaré, F.; Villeneuve, D.M. Observation of Cooper minimum in krypton using high harmonic spectroscopy. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 074010. [Google Scholar] [CrossRef] [Green Version]
- Shiner, A.D.; Schmidt, B.E.; Trallero-Herrero, C.; Wörner, H.-J.; Patchkovskii, S.; Corkum, P.B.; Kieffer, J.-C.; Légaré, F.; Villeneuve, D.M. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nat. Phys. 2011, 7, 464–467. [Google Scholar] [CrossRef]
- Higuet, J.; Ruf, H.; Thiré, N.; Constant, R.; Cormier, E.; Descamps, D.; Mével, E.; Petit, S.; Pons, B.; Mairesse, Y.; et al. High-harmonic spectroscopy of the cooper minimum in argon: Experimental and theoretical sudy. Phys. Rev. A 2011, 83, 053401. [Google Scholar] [CrossRef] [Green Version]
- Schoun, S.B.; Chirla, R.; Wheeler, J.; Roedig, C.; Agostini, P.; DiMauro, L.F. Attosecond pulse shaping around a Cooper minimum. Phys. Rev. Lett. 2014, 112, 153001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glauber, R.J. The quantum theory of optical coherence. Phys. Rev. 1963, 130, 2529–2539. [Google Scholar] [CrossRef] [Green Version]
- Glauber, R.J. Coherent and incoherent states of the radiation field. Phys. Rev. 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Schrödinger, E. Der stetige Übergang von der Mikro-zur Makromechanik. Die Nat. 1926, 14, 664–666. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. (Eds.) Theory of Nonclassical States of Light; Taylor & Francis: London, UK; New York, NY, USA, 2003. [Google Scholar]
- Andersen, U.L.; Gehring, T.; Marquardt, C.; Leuchs, G. 30 years of squeezed light generation. Phys. Scr. 2016, 91, 053001. [Google Scholar] [CrossRef]
- Neumann, J. Mathematische Grundlagen der Quantenmechanik; Springer: Berlin, Germany, 1932. [Google Scholar]
- Bargmann, Y.V.; Butera, P.; Girardello, L.; Klauder, J.R. On the completeness of the coherent states. Rep. Math. Phys. 1971, 2, 221–228. [Google Scholar] [CrossRef]
- Perelomov, A.M. Remark on the completeness of the system of coherent states. Teor. Mat. Fiz. 1971, 6, 213–224. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products, 6th ed.; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Lewenstein, M.; Ciappina, M.F.; Pisanty, E.; Rivera-Dean, J.; Lamprou, T.; Tzallas, P. The quantum nature of light in high harmonic generation. arXiv 2020, arXiv:physics.optics/2008.10221. [Google Scholar]
- Wood, W.M.; Siders, C.W.; Downer, M.C. Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting. Phys. Rev. Lett. 1991, 67, 3523–3526. [Google Scholar] [CrossRef]
- Rae, S.C.; Burnett, K. Detailed simulation of plasma-induced spectral blueshifting. Phys. Rev. A 1992, 46, 1084–1090. [Google Scholar] [CrossRef]
- Orfanos, I.; Skantzakis, E.; Liontos, I.; Tzallas, P.; Charalambidis, D. Ponderomotive shifts by intense laser-driven coherent extreme ultraviolet radiation. J. Phys. B At. Mol. Opt. Phys. 2021, 54, 084002. [Google Scholar] [CrossRef]
- Dattoli, G.; Del Franco, M.; Labat, M.; Ottaviani, P.L.; Pagnutti, S. Introduction to the physics of free electron laser and comparison with conventional sources. In Free Electron Lasers; Varró, S., Ed.; InTech: Rijeka, Croatia, 2012; Chapter 1; pp. 1–38. [Google Scholar]
- Dattoli, G.; Nguyen, F. Free Electron Laser and Fundamental Physics. Prog. Part. Nucl. Phys. 2018, 99, 1–28. [Google Scholar] [CrossRef]
- Debus, A.; Steininger, K.; Kling, P.; Carmesin, C.M.; Sauerbrey, R. Realizing quantum free-electron lasers: A critical analysis of the experimental challenges and theoretical limits. Phys. Scr. 2019, 94, 074001. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varró, S. Quantum Optical Aspects of High-Harmonic Generation. Photonics 2021, 8, 269. https://doi.org/10.3390/photonics8070269
Varró S. Quantum Optical Aspects of High-Harmonic Generation. Photonics. 2021; 8(7):269. https://doi.org/10.3390/photonics8070269
Chicago/Turabian StyleVarró, Sándor. 2021. "Quantum Optical Aspects of High-Harmonic Generation" Photonics 8, no. 7: 269. https://doi.org/10.3390/photonics8070269
APA StyleVarró, S. (2021). Quantum Optical Aspects of High-Harmonic Generation. Photonics, 8(7), 269. https://doi.org/10.3390/photonics8070269