Aerial Projection 3D Display Based on Integral Imaging
Abstract
:1. Introduction
2. Principle of the Aerial Projection 3D Display
2.1. Fabrication Principle of the Lens-Array HOE
2.2. Reconstruction Principle of 3D Images
2.3. Imaging Principle of the Parabolic Mirrors
2.4. Imaging Principle of the Aerial Projection 3D Display
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chou, P.Y.; Wu, J.Y.; Hsieh, P.Y.; Chen, C.H.; Yu, Z.S.; Tai, C.H.; Huang, Y.P. A toroidal-lens designed structure for static type table-top floating image system with horizontal parallax function. J. Soc. Inf. Disp. 2017, 25, 421–433. [Google Scholar] [CrossRef]
- Yoshida, S. 360-degree viewable glasses-free tabletop 3d display composed of conical screen and modular projector arrays. Opt. Express 2016, 24, 13194–13203. [Google Scholar] [CrossRef]
- Yoshida, S.; Yano, S.; Ando, H. Prototyping of glasses-free table-style 3D display for tabletop tasks. Sid Symp. Dig. Tech. Pap. 2010, 41, 211–214. [Google Scholar] [CrossRef]
- Xia, X.; Liu, X.; Li, H.; Zheng, Z.; Wang, H.; Peng, Y. A 360-degree floating 3d display based on light field regeneration. Opt. Express 2013, 21, 11237–11247. [Google Scholar] [CrossRef] [PubMed]
- Daisuke, M.; Kensuke, S.; Koji, S.; Kenji, M. Volumetric display system based on three-dimensional scanning of inclined optical image. Opt. Express 2006, 14, 12760–12769. [Google Scholar]
- Jia, J.; Chen, J.; Yao, J.; Chu, D. A scalable diffraction-based scanning 3D colour video display as demonstrated by using tiled gratings and a vertical diffuser. Sci. Rep. 2017, 7, 44656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.; Zhou, X.; Li, H.; Yang, Q.; Liu, X. 360 Deg full-parallax light-field display using panoramic camera. Appl. Opt. 2016, 55, 4729–4735. [Google Scholar] [CrossRef]
- Takaki, Y.; Uchida, S. Table screen 360-degree three-dimensional display using a small array of high-speed projectors. Opt. Express 2012, 20, 8848–8861. [Google Scholar] [CrossRef]
- Maeda, Y.; Miyazaki, D.; Mukai, T.; Maekawa, S. Volumetric display using rotating prism sheets arranged in a symmetrical configuration. Opt. Express 2013, 21, 27074–27086. [Google Scholar] [CrossRef]
- Baasantseren, G.; Park, J.H.; Byeon, J.; Kwon, K.C.; Yoo, K.H.; Erdenebat, M.U. Integral-floating display with 360-degree horizontal viewing angle. J. Opt. Soc. Korea 2012, 16, 365–371. [Google Scholar]
- Hayan, K.; Keehoon, H.; Yongjun, L.; Hyon-Gon, C.; Jinwoong, K. Continuous viewing window formation for 360-degree holographic display. Digit. Hologr. Three-Dimens. Imaging 2017, W2A.22. [Google Scholar] [CrossRef]
- Kota, K.; Hasegawa, S.; Hayasaki, Y. Volumetric bubble display. Optica 2017, 4, 298–302. [Google Scholar]
- Kota, K.; Yoshio, H. Updatable bubble display. Digit. Hologr. Three-Dimens. Imaging 2017, M2B.4. [Google Scholar] [CrossRef]
- Patel, S.; Cao, J.; Lippert, A. A volumetric three-dimensional digital light photoactivatable dye display. Nat. Commun. 2017, 8, 15239. [Google Scholar] [CrossRef]
- Zhu, B.; Qian, B.; Liu, Y.; Xu, C.; Liu, C.; Chen, Q. A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals. Npg Asia Mater. 2017, 9, E394. [Google Scholar] [CrossRef] [Green Version]
- Hirayama, R.; Naruse, M.; Nakayama, H.; Tate, N.; Shiraki, A.; Kakue, T. Design, implementation and characterization of a quantum-dot-based volumetric display. Sci. Rep. 2015, 5, 8472. [Google Scholar] [CrossRef] [Green Version]
- Asuka, Y.; Masataka, I.; Yoshihiro, K.; Osamu, O. 360-degree fog projection interactive display. ACM SIGGRAPH Asia Emerg. Technol. 2011, 19. [Google Scholar] [CrossRef]
- Sand, A.; Rakkolainen, I. A hand-held immaterial volumetric display. Stereoscopic Displays and Applications XXV. Int. Soc. Opt. Photonics 2014, 9011, 90110Q-7. [Google Scholar]
- Barnum, P.C.; Narasimhan, S.G.; Kanade, T. A multi-layered display with water drops. ACM Trans. Graph. 2010, 29, 1–7. [Google Scholar] [CrossRef]
- Kim, J.; Lim, Y.; Hong, K.; Chang, E.; Choo, H. 360-degree tabletop color holographic display. Digit. Hologr. Three-Dimens. Imaging 2017, W3A.1. [Google Scholar] [CrossRef]
- Lim, Y.; Hong, K.; Kim, H.; Kim, H.E.; Hahn, J. 360-degree tabletop electronic holographic display. Opt. Express 2016, 24, 24999–25009. [Google Scholar] [CrossRef] [Green Version]
- Kakue, T.; Nishitsuji, T.; Kawashima, T.; Suzuki, K.; Shimobaba, T.; Ito, T. Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors. Sci. Rep. 2015, 5, 11750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onural, L. Design of a 360-degree holographic 3D video display using commonly available display panels and a paraboloid mirror. SPIE OPTO 2017, 101260I. [Google Scholar]
- Hsu, C.H.; Cheng, W.H.; Hua, K.L. Holotabletop: An anamorphic illusion interactive holographic-like tabletop system. Multimed. Tools Appl. 2017, 76, 9245–9264. [Google Scholar] [CrossRef]
- Lim, Y.; Hong, K.; Kim, H.; Choo, H.; Park, M.; Kim, J. An optical method for compensating phase discontinuity in a 360-degree viewable tabletop digital holographic display system. SPIE Digit. Opt. Technol. 2017, 10335, 1033510. [Google Scholar]
- Chang, E.Y.; Choi, J.; Lee, S.; Kwon, S.; Yoo, J.; Choo, H.G. 360-degree Color Hologram Generation for Real 3-D Object. Digit. Hologr. Three-Dimens. Imaging 2017, W2A.28. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, H.; Yu, W.; He, M.; Li, D.; Wang, Q. Tabletop augmented reality 3d display system based on integral imaging. J. Opt. Soc. Am. B 2017, 34, B16. [Google Scholar] [CrossRef]
- Shih, C.; Wang, J.; Ting, C.; Huang, Y. Floating 3d image for high resolution portable device using integral photography theory. SID Symp. Dig. Tech. Pap. 2015, 46, 354–357. [Google Scholar] [CrossRef]
- Miyazaki, D.; Maeda, Y. Floating three-dimensional display viewable from 360 degrees. SPIE-Int. Soc. Opt. Eng. 2012, 8288, 822881H. [Google Scholar]
- Hong, J.Y.; Yeom, J.; Jeong, Y.; Kim, J.; Park, S.G.; Hong, K. Table-top display using integral floating display. In Proceedings of the 2013 International Conference on 3D Imaging, Liege, Belgium, 3–5 December 2013; pp. 1–5. [Google Scholar]
- Zhao, D.; Su, B.; Chen, G.; Liao, H. 360-degree viewable floating autostereoscopic display using integral photography and multiple semitransparent mirrors. Opt. Express 2015, 23, 9812–9823. [Google Scholar] [CrossRef]
- Zhao, D.; Ma, L.; Ma, C.; Tang, J.; Liao, H. Floating autostereoscopic 3D display with multidimensional images for tele surgical visualization. Int. J. Comput. Assist. Radiol. Surg. 2016, 11, 207–215. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, A.; Ma, X.; Liu, B.; Ma, F.; Ming, H. Integral floating 3d display using two retro-reflector arrays. IEEE Photonics J. 2017, 9, 7000108. [Google Scholar]
- Yoshimoto, K.; Takahashi, H.; Yamada, K. 360-degree three-dimensional flat panel display using holographic optical elements. SPIE/IST Electron. Imaging 2015, 9391, 93910M. [Google Scholar]
- Yu, X.; Sang, X.; Gao, X.; Yang, S.; Liu, B.; Chen, D. Floating aerial 3d display based on the freeform-mirror and the improved integral imaging system. Opt. Commun. 2018, 423, 162–166. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, Z.Q.; Zhang, L.; Li, D.H.; Li, X.W. 3D image hiding using deep demosaicking and computational integral imaging. Opt. Lasers Eng. 2022, 148, 106772. [Google Scholar] [CrossRef]
- He, M.Y.; Zhang, H.L.; Deng, H.; Li, D.H.; Wang, Q.H. Dual-view-zone tabletop 3D display system based on integral imaging. Appl. Opt. 2018, 57, 952–958. [Google Scholar] [CrossRef]
- Li, S.L.; Wang, Q.H.; Xiong, Z.L.; Deng, H.; Ji, C.C. Multiple orthographic frustum combing for real-time computer generated integral imaging system. J. Disp. Technol. 2014, 10, 704–709. [Google Scholar] [CrossRef]
Components | Parameters | Values |
---|---|---|
Photopolymer material | Thickness | 15 ± 1 μm |
Resolution | line/mm | |
Sensitive wavelength | 532 nm | |
Sensitivity | 10 mJ/cm2 | |
Refractive index modulation | >0.02 | |
Averaged Refractive Index | 1.47 | |
Lens-array | Pitch | 1 mm |
Focal length | 3.3 mm | |
Projector | Model | MX518 F |
Resolution | 1600 × 1200 | |
Parabolic mirror | Diameter | 150 mm |
Height | 25 mm | |
Inner diameter | 40 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.-X.; Zhang, H.-L.; Ji, Q.-L.; Deng, H.; Li, D.-H. Aerial Projection 3D Display Based on Integral Imaging. Photonics 2021, 8, 381. https://doi.org/10.3390/photonics8090381
Zhao W-X, Zhang H-L, Ji Q-L, Deng H, Li D-H. Aerial Projection 3D Display Based on Integral Imaging. Photonics. 2021; 8(9):381. https://doi.org/10.3390/photonics8090381
Chicago/Turabian StyleZhao, Wu-Xiang, Han-Le Zhang, Qing-Lin Ji, Huan Deng, and Da-Hai Li. 2021. "Aerial Projection 3D Display Based on Integral Imaging" Photonics 8, no. 9: 381. https://doi.org/10.3390/photonics8090381
APA StyleZhao, W. -X., Zhang, H. -L., Ji, Q. -L., Deng, H., & Li, D. -H. (2021). Aerial Projection 3D Display Based on Integral Imaging. Photonics, 8(9), 381. https://doi.org/10.3390/photonics8090381