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Abstract: Background: Optical components with high damage thresholds are very desirable in
intense-light systems. Metalenses, being composed of phase-control nanostructures with peculiar
properties, are one of the important component candidates in future optical systems. However, the
optothermal mechanism in metalenses is still not investigated adequately. Methods: In this study,
the optothermal absorption in transmissive metalenses made of silicon nanobricks and nanoholes
is investigated comparatively to address this issue. Results: The geometrical dependencies of
nanostructures’ transmittance, phase difference, and field distribution are calculated numerically
via simulations. To demonstrate the optothermal mechanism in metalenses, the mean absorption
efficiencies of the selected unit-cells, which would constitute metalenses, are analyzed. The results
show that the electric field in the silicon zone would lead to an obvious thermal effect, and the
enhancement of the localized electric field also results in the strong absorption of optical energy. Then,
two typical metalenses are designed based on these nanobricks and nanoholes. The optothermal
simulations show that the nanobrick-based metalens can handle a power density of 0.15 W/µm2,
and the density of the nanohole-based design is 0.12 W/µm2. Conclusions: The study analyzes and
compares the optothermal absorption in nanobricks and nanoholes, which shows that the electric-
field distribution in absorbent materials and the localized-field enhancement are the two key effects
that lead to optothermal absorption. This study provides an approach to improve the anti-damage
potentials of transmissive metalenses for intense-light systems.

Keywords: optothermal absorption; metasurfaces; complementary nanostructures; intense-light systems

1. Introduction

Intense-light systems increasingly impact laser fabrication [1], directed energy [2],
renewable energy [3,4], etc. Transmissive phase components with high damage thresholds
serve the crucial roles of beam shaping, steering, and focusing in these systems. Traditional
refractive components mainly rely on geometrical shapes to bend rays, leading to the high
complexity of intense-light systems. Flat optical components with anti-damage properties
are the core to solving this problem. Particularly, metalenses, being composed of phase-
control nanostructures with peculiar properties such as ultra-compact [5,6], large field of
view [7,8], perfect absorption [9–11], etc., are one of the most important candidates for
the future [12–14]. Many metasurfaces have been investigated to realize phase-control
functions, such as imaging [15,16], steering [17–19], and holographic imaging [20,21].
However, the optothermal mechanism in metalenses is still not investigated adequately.

Due to the electromagnetic resonant effect, the electric field is usually localized in
nanostructures [12], which would lead to optothermal absorption. This phenomenon is em-
ployed to induce deformation in laser fabrication of nanostructures [22]. The experiments
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show that the heat power volume density in nanostructures stems from the imaginary part
of permittivity and the in situ electric field [23]. This optothermal effect is also experimen-
tally demonstrated in other plasmonic [24] and dielectric [25,26] nanostructures. Thus,
to improve damage thresholds, an intuitional method is to tune the electric field out of
absorbent constituent materials, avoiding direct optothermal absorption. This method has
been experimentally verified in anti-reflection nanotextures on fused silica, in which the
strong electric field is tuned from nanostructures into the air and anti-damage properties
are obtained successfully [27,28]. According to the method, our previous works also demon-
strated that reflective metasurfaces made of dielectric nanoholes could be realized with
high damage thresholds via field manipulation, and the electromagnetic mechanism has
been explained via the electromagnetic distribution of excitation states [29,30]. To further
demonstrate the principles of anti-damage metasurfaces, the optothermal mechanism in
transmissive phase-control metalenses still requires investigation.

In this study, the optothermal absorption in transmissive phase-control metalenses
made of silicon nanobricks and nanoholes are investigated comparatively. The optothermal
absorption of the nanobricks and nanoholes with the 0-2π phase coverage is analyzed
numerically. The results show that the electric field in the silicon zone would lead to an
obvious thermal effect, and the enhancement of the localized electric field also results in
strong absorption of optical energy. Then, two typical metalenses are constructed based
on these nanostructures. The optothermal simulations show that the nanobrick-based
metalens can handle a stronger laser of 0.15 W/µm2 than that (0.12 W/µm2) of nanoholes.
The study demonstrates that the electric-field distribution in absorbent materials and the
localized-field enhancement are the two key effects that lead to optothermal absorption,
which improves the principles of designing anti-damage metalenses.

2. Materials and Methods

The studied transmissive metalenses are composed of periodic silicon (Si) nanobricks
or nanoholes on SiO2 substrates with the same height H = 200 nm and the same lattice
period P = 600 nm, as shown in Figure 1. Each unit-cell has a nanostructure with a
rectangular shape described by length Lb or Lh, and width Wb or Wh. p-Si is chosen in the
study due to its higher melting point and thermal stability than amorphous Si. The coating
material is air, and the absorptivity could be ignorable. The incident light is continuous
and polarized along the x-axis direction and injected from the bottom of the unit-cells. The
wavelength is set as λ = 1064 nm, which is usually used in intense-light systems. The length
and width are the control parameters used to manipulate the electric field distribution,
phase difference, and transmittance.

Photonics 2022, 9, x FOR PEER REVIEW 2 of 9 
 

 

Due to the electromagnetic resonant effect, the electric field is usually localized in 
nanostructures [12], which would lead to optothermal absorption. This phenomenon is 
employed to induce deformation in laser fabrication of nanostructures [22]. The experi-
ments show that the heat power volume density in nanostructures stems from the imagi-
nary part of permittivity and the in situ electric field [23]. This optothermal effect is also 
experimentally demonstrated in other plasmonic [24] and dielectric [25,26] nanostruc-
tures. Thus, to improve damage thresholds, an intuitional method is to tune the electric 
field out of absorbent constituent materials, avoiding direct optothermal absorption. This 
method has been experimentally verified in anti-reflection nanotextures on fused silica, in 
which the strong electric field is tuned from nanostructures into the air and anti-damage 
properties are obtained successfully [27,28]. According to the method, our previous works 
also demonstrated that reflective metasurfaces made of dielectric nanoholes could be re-
alized with high damage thresholds via field manipulation, and the electromagnetic 
mechanism has been explained via the electromagnetic distribution of excitation states 
[29,30]. To further demonstrate the principles of anti-damage metasurfaces, the optother-
mal mechanism in transmissive phase-control metalenses still requires investigation. 

In this study, the optothermal absorption in transmissive phase-control metalenses 
made of silicon nanobricks and nanoholes are investigated comparatively. The optother-
mal absorption of the nanobricks and nanoholes with the 0-2π phase coverage is analyzed 
numerically. The results show that the electric field in the silicon zone would lead to an 
obvious thermal effect, and the enhancement of the localized electric field also results in 
strong absorption of optical energy. Then, two typical metalenses are constructed based 
on these nanostructures. The optothermal simulations show that the nanobrick-based 
metalens can handle a stronger laser of 0.15 W/µm2 than that (0.12 W/µm2) of nanoholes. 
The study demonstrates that the electric-field distribution in absorbent materials and the 
localized-field enhancement are the two key effects that lead to optothermal absorption, 
which improves the principles of designing anti-damage metalenses. 

2. Materials and Methods 
The studied transmissive metalenses are composed of periodic silicon (Si) nanobricks 

or nanoholes on SiO2 substrates with the same height H = 200 nm and the same lattice 
period P = 600 nm, as shown in Figure 1. Each unit-cell has a nanostructure with a rectan-
gular shape described by length Lb or Lh, and width Wb or Wh. p-Si is chosen in the study 
due to its higher melting point and thermal stability than amorphous Si. The coating ma-
terial is air, and the absorptivity could be ignorable. The incident light is continuous and 
polarized along the x-axis direction and injected from the bottom of the unit-cells. The 
wavelength is set as λ = 1064 nm, which is usually used in intense-light systems. The 
length and width are the control parameters used to manipulate the electric field distri-
bution, phase difference, and transmittance. 

 
Figure 1. Schematics of two unit-cells: (a) Nanobricks; (b) Nanoholes. The nanostructures have the 
same parameters as height H = 200 nm and lattice period P = 600 nm. The rectangular shapes are 
described by length Lb and Lh, and width Wb and Wh, respectively. 

Figure 1. Schematics of two unit-cells: (a) Nanobricks; (b) Nanoholes. The nanostructures have the
same parameters as height H = 200 nm and lattice period P = 600 nm. The rectangular shapes are
described by length Lb and Lh, and width Wb and Wh, respectively.
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For absorbent materials, the analytical model of the optothermal effect can be defined
by the imaginary part of the complex permittivity ε of silicon and the in-situ electric field
|E|, which can be described as [23]:

Pabs

(→
r , ω

)
=

0.5ε0ω
∣∣∣E(→r , ω

)∣∣∣2imag
(

ε
(→

r , ω
))

sourcepower(ω)

where Pabs

(→
r , ω

)
is the spatial distribution of the fraction of absorbed power per cubic

meter, normalized to the source power (unit: m−3). The absorption would transfer to heat,
leading to the thermal effect. However, in metalenses made of nanostructures, the electric
field distributes nonuniformly due to the localized-field effect. Subsequently, the simulation
methods have to be exploited to calculate the electric field distribution in our study.

All the optical simulations in this study are implemented by the three-dimensional
finite-difference time-domain (3D-FDTD) algorithm, and the optothermal simulations
are based on the finite element method (FEM). The simulation region of nanostructures
is surrounded by periodic boundaries in the x-axis and y-axis directions and perfectly
matched layers in the z-axis direction. The simulation region of metalenses was surrounded
by periodic boundaries in the y-axis direction and perfectly matched layers in the x-axis
and z-axis directions. All the optical and thermal constants of materials were taken directly
from the database [31].

3. Results and Discussion

To construct transmissive metalenses, a group of unit-cells should be designed with
high transmittance and phase differences covering the 0–2π range. By sweeping the
parameters (length Lb and Lh, and width Wb and Wh) of the nanostructures, the geometrical
dependencies of the transmittance and phase difference are obtained via calculating the
S-matrix parameter of the unit-cells, as shown in Figure 2. When changing the width Wb
and length Lb of nanobricks, the transmittance can be tuned as shown in Figure 2a, and the
phase difference of a transmitted light changes as shown in Figure 2b. The transmittance
and phase difference of the hole unit-cells are also the functions of Lh and Wh. The strips
of high transmittance come from the coupling between the electric/magnetic dipoles in
the nanostructures. With suitable geometrical parameters, high transmittance of more than
90% can be obtained. When tuning the nanostructures geometrically to obtain the 0–2π
phase coverage, the transmittance of unit-cells will decrease. Except for the transmittance
and phase coverage, the electric field distribution in the unit-cells is also important for the
intense-light applications. Thus, the electric field distributions of these nanostructures are
also obtained via simulations.

Metalenses are composed of nanostructures that have digitized phase-control values
covering the 0–2π range. In this study, the 0–2π range is digitized by 8 phase points with an
interval of π/4; thus eight unit-cells are selected. When selecting unit-cells, ±0.1 rad phase
deviation is accepted to obtain better field confinement and higher transmittance, meaning
that the unit-cells with phase differences of nπ/4 ± 0.1 rad (n = 0, 1, . . . , 8) are chosen first.
Then, the unit-cells with in-air field confinement and high transmittance are selected, which
are marked by the white stars in Figure 2. The details of the selected unit-cells are shown in
Figure 3. The transmittance-phase relationship of nanobricks and nanoholes are shown in
Figure 3a,b, while the others describe the widths and lengths of the selected nanostructures.
It is noted that at the phase point of 3π/4, the transmittance is only 50%. The most energy
is reflected by the nanostructure, not absorbed.
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The responding electric field distributions of the selected unit-cells are shown in
Figures 4 and 5 for nanobricks and nanoholes, respectively. The electric field of the selected
unit-cells is normalized with the source. The x–y–plane distributions of field |E| are
obtained with z = 100 nm, while the x–z–plane distributions are obtained with y = 0 nm.
Because the phase control of transmitted light relies on the electromagnetic resonances, the
field-enhancement effect in some unit-cells is inevitable to obtain the 0–2π phase coverage.
To demonstrate the influence of the field distribution on the optothermal absorption, the
optothermal absorption efficiencies of the selected unit-cells are simulated, and the mean
values are shown in Figure 6. Under the illumination of the continuous incident light, the
partial heat would spread rapidly to the whole nanostructure by thermal transmission due
to the subwavelength size. Thus, the mean absorption is considered here. In Figures 4 and 5,
for both nanobricks and nanoholes, the absorption efficiencies at the phase points (0, π/4,
π/2, 3π/4) are smaller than the others. In Figure 4, we can see that at the phase points (π,
5π/4, 3π/2, 7π/4), these unit-cells have stronger electric resonances and localized field
intensities in the silicon bricks than that in the air zone. It means that the electric field in
absorbent materials would lead to strong optothermal, and tuning the field into the air
zone with ignorable absorption can reduce the heat effect. For example, in Figure 4b,c, the
very strong field appears in the air zone, leading to a low absorption in Figure 6. These
electric fields do not interact with the silicon directly, avoiding the optothermal effect. On
the other hand, in Figure 5e–h, although most fields of nanoholes distribute in the air holes,
some points with strong field intensities enhanced by the nanostructures appear on the
Si–SiO2 interfaces, resulting in strong absorption. Absorption is related to the square of the
electric field amplitude |E2|; thus, the field enhancement in absorbent materials will result
in a strong absorption.
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Figure 6. The mean absorption efficiencies of the selected unit-cells, which are defined as absorbed
power per cubic meter, normalized to the source power.

Based on the selected unit-cells with the 0–2π coverage in Figure 3, two 1D metalenses
are constructed and investigated. The phase profiles of the metalenses are
ϕ(x) = −k0

(√
x2 + f 2 − f

)
, where k0 is the wavenumber in a vacuum, x is the x-axis

coordinate, and f is the focal length. The simulated metalenses have the size of 30 µm
(x-axis) × 0.6 µm (y-axis). The focusing performances of the two metalenses are shown
in Figure 7a,c. In optical absorption simulations, the x-axis and y-axis boundaries of the
metalenses are set as “closed”, and the z-axis boundaries are set as “shell”. The absorption
density distributions Pabs are shown in Figure 7c,d. It is seen that the absorption mainly
concentrates in the nanobricks or at the corners of the nanoholes. Due to the heat con-
duction, the temperature distribution is different from the absorption density distribution.
Thermal damage would appear once the maximum temperature in metalens is higher than
the melting point 1683 K of silicon. Under the illumination of different incident power,
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the maximum temperature values in the metalenses are simulated via the finite element
method, as shown in Figure 8. To remove the influence of the environment, the ambient
temperature of the SiO2 substrate and air is set as a constant value of 300 K. In the heat sim-
ulations, all boundaries of the metalenses are set as “closed”. When the illumination power
changes, the corresponding heat energy will vary according to the absorption efficiencies in
Figure 7. After calculating the thermal conduction and convection of the heat energy, it will
stay at a steady-state. Then, the temperature distributions of the metalenses with varying
illumination power are obtained. With the assumption that the optothermal property of
silicon remains unchanged before the thermal damage happens, the maximum temperature
has a linear relationship with the incident power. Although the stronger field distributes
in the air zone, some weaker field still stays in the silicon and would be absorbed via the
optothermal conversion, as shown in Figure 7b,d. Under the illumination of continuous
light with a high power-density, the highest temperatures of metalenses can reach the
metaling point due to heat accumulation. The metalens made of nanobricks starts to be
damaged with an indent power of 2.70 W, while the nanohole one can handle the highest
power of 2.18 W. The corresponding maximum power-density values are 0.15 W/µm2 and
0.12 W/µm2, respectively.
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point of 1683 K of silicon.
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4. Conclusions

In this study, the optothermal absorption in transmissive metalenses made of silicon
nanobricks and nanoholes was investigated comparatively. The transmittance, phase differ-
ence, and field distribution of nanobricks and nanoholes were numerically analyzed. The
optothermal results show that the electric field in the silicon zone would lead to an obvious
thermal effect. The in-air electric field would not be absorbed by absorbent materials,
avoiding the optothermal conversion. Meanwhile, the field enhancement also results in
strong absorption of optical energy. Thus, the key to designing anti-damage metalens is
manipulating the field distribution out of absorbent materials and restraining the field
enhancement in nanostructures. Two presentative metalenses were designed based on
these nanobricks and nanoholes. The optothermal simulations show that they can handle a
maximum laser density of 0.15 W/µm2 and 0.12 W/µm2. The study compared the optother-
mal conversion in transmissive metalenses, demonstrating the two key optothermal factors
of electric-field distribution and enhancement. This provided an approach to improving
high damage thresholds in transmissive metalenses for intense-light systems.
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