Interface Edge Mode Confinement in Dielectric-Based Quasi-Periodic Photonic Crystal Structure
Abstract
:1. Introduction
2. Design Methods and Analysis
3. Results and Discussion
4. Sensing Characteristics Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, S.; Villeneuve, P.R.; Joannopoulos, J.D. Large omnidirectional band gaps in metallodielectric photonic crystals. Phys. Rev. B 1996, 54, 11245. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, A.P.; Dorofeenko, A.V.; Erokhin, S.G.; Inoue, M.; Lisyansky, A.A.; Merzlikin, A.M.; Granovsky, A.B. Surface state peculiarities in one-dimensional photonic crystal interfaces. Phys. Rev. B 2006, 74, 045128. [Google Scholar] [CrossRef]
- Maciá, E. The role of aperiodic order in science and technology. Rep. Prog. Phys. 2006, 69, 397. [Google Scholar] [CrossRef]
- Bandres, M.A.; Rechtsman, M.C.; Segev, M. Topological Photonic Quasicrystals: Fractal Topological Spectrum and Protected Transport. Phys. Rev. X 2016, 6, 011016. [Google Scholar] [CrossRef]
- Hosseini, A.; Massoud, Y. Nanoscale surface plasmon based resonator using rectangular geometry. Appl. Phys. Lett. 2007, 90, 181102. [Google Scholar] [CrossRef]
- Symonds, C.; Lheureux, G.; Hugonin, J.P.; Greffet, J.J.; Laverdant, J.; Brucoli, G.; Lemaitre, A.; Senellart, P.; Bellessa, J. Confined Tamm Plasmon Lasers. Nano Lett. 2013, 13, 3179. [Google Scholar] [CrossRef]
- Hosseini, A.; Nejati, H.; Massoud, Y. Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides. Opt. Exp 2007, 15, 15280–15286. [Google Scholar] [CrossRef]
- Hosseini, A.; Nieuwoudt, A.; Massoud, Y. Optimizing Dielectric Strips Over a Metallic Substrate for Subwavelength Light Confinement. IEEE Photonics Lett. 2007, 19, 522–524. [Google Scholar] [CrossRef]
- Alam, M.; Massoud, Y. A closed-form analytical model for single nanoshells. IEEE Trans. Nanotechnol. 2006, 5, 265–272. [Google Scholar] [CrossRef]
- Goyal, A.K.; Pal, S. Design analysis of Bloch surface wave based sensor for haemoglobin concentration measurement. Appl. Nanosci. 2020, 10, 3639–3647. [Google Scholar] [CrossRef]
- Goyal, A.K.; Saini, J. Performance Analysis of Bloch Surface Wave Based Sensor using Transition Metal Dichalcogenides. Appl. Nanosci. 2020, 10, 4307–4313. [Google Scholar] [CrossRef]
- Goyal, A.K. Design Analysis of One-dimensional Photonic Crystal Based Structure for Hemoglobin Concentration Measurement. Prog. Electromagn. Res. M 2020, 197, 77. [Google Scholar] [CrossRef]
- Goyal, A.K.; Dutta, H.; Pal, S. Development of Uniform Porous One-dimensional Photonic Crystal Based Sensor. Optik 2020, 223, 165597. [Google Scholar] [CrossRef]
- Chan, Y.S.; Chan, C.T.; Liu, Z.Y. Photonic Band Gaps in Two Dimensional Photonic Quasicrystals. Phys. Rev. Lett. 1998, 80, 956. [Google Scholar] [CrossRef]
- Chongjun, J.; Bingying, C.; Baoyuan, M.; Zhaolin, L.; Daozhong, Z. Band gap and wave guiding effect in a quasiperiodic photonic crystal. Appl. Phys. Lett. 1999, 75, 1848. [Google Scholar]
- Aly, A.H.; Elsayed, H.A.; Malek, C. Transmittance properties of a quasi-periodic one-dimensional photonic crystals that incorporate nanocomposite material. Int. J. Mod. Phys. B 2018, 32, 1850220. [Google Scholar] [CrossRef]
- Berzera, C.G.; Albuquerque, E.L.; Nogueira, E. On the spin wave multifractal spectra in magnetic multilayers. Physica A 1999, 267, 124. [Google Scholar] [CrossRef]
- Vardeny, Z.V.; Nahata, A.; Agrawal, A. Optics of photonic quasicrystals. Nat. Photonics 2013, 7, 177. [Google Scholar] [CrossRef]
- Hattori, T.; Tsurumachi, N.; Kawato, S.; Nakatsuka, H. Photonic dispersion relation in a one-dimensional qnasicrystal. Phys. Rev. B 1994, 50, 4220. [Google Scholar] [CrossRef]
- Kaliteevski, M.A.; Nikolaev, V.V.; Abram, R.A.; Brand, S. Bandgap Structure of Optical Fibonacci Lattices after Light Diffraction. Opt. Spectrosc. 2001, 91, 109–118. [Google Scholar] [CrossRef]
- Huang, X.Q.; Jiang, S.S.; Peng, R.W.; Hu, A. Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers. Phys. Rev. B 2001, 63, 245104. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Y.; Feng, S.; Huang, K.C.; Yi, Y.; Joannopoulos, J.D. Photonic band gaps and localization in the Thue-Morse structures. Appl. Phys. Lett. 2005, 86, 201110. [Google Scholar] [CrossRef]
- Lei, H.; Chen, J.; Nouet, G.; Feng, S.; Gong, Q.; Jiang, X. Photonic band gap structures in the Thue–Morse lattice. Phys. Rev. B 2007, 75, 205109. [Google Scholar] [CrossRef]
- Kohmoto, M.; Sutherland, B.; Iguchi, K. Localization in Optics: Quasiperiodic Media. Phys. Rev. B 1987, 58, 2436. [Google Scholar] [CrossRef]
- Capaz, R.B.; Koiller, B.; de Queiroz, S.L.A. Gap states and localization properties of one-dimensional Fibonacci quasicrystals. Phys. Rev. B 1990, 42, 6402. [Google Scholar] [CrossRef]
- Fujiwara, T.; Kohmoto, M.; Tokihiro, T. Multifractal wave functions on a Fibonacci lattice. Phys. Rev. B 1989, 40, 7413. [Google Scholar] [CrossRef]
- Abbas, M.; Kim, J.; Rana, A.; Kim, I.; Rehman, B.; Ahmad, Z.; Massoud, Y.; Seong, J.; Badloe, T.; Park, K.; et al. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems. Nanoscale 2022, 14, 6425–6436. [Google Scholar] [CrossRef]
- Han, P.; Wang, H. Criterion of omnidirectional reflection in a one-dimensional photonic heterostructure. J. Opt. Soc. Am. B 2005, 22, 1571–1575. [Google Scholar] [CrossRef]
- Goyal, A.K.; Kumar, A. Recent advances and progresses in photonic devices for passive radiative cooling application: A review. J. Nanophotonics 2020, 14, 030901. [Google Scholar] [CrossRef]
- Delfan, A.; Liscidini, M.; Sipe, J.E. Surface enhanced Raman scattering in the presence of multilayer dielectric structures. J. Opt. Soc. Am. B 2012, 29, 1863. [Google Scholar] [CrossRef]
- Kohmoto, M.; Kadanoff, L.P.; Tang, C. Localization Problem in One Dimension: Mapping and Escape. Phys. Rev. Lett. 1983, 50, 1870. [Google Scholar] [CrossRef]
- Goyal, A.K.; Dutta, H.S.; Pal, S. Porous photonic crystal structure for sensing applications. J. Nanophotonics 2018, 12, 040501. [Google Scholar] [CrossRef]
- Ratra, K.; Singh, M.; Goyal, A.K. Design and Analysis of Omni-directional Solar Spectrum Reflector using One-dimensional Photonic Crystal. J. Nanophotonics 2020, 14, 026005. [Google Scholar] [CrossRef]
- Goyal, A.K.; Kumar, A.; Massoud, Y. Performance Analysis of DAST Material-Assisted Photonic-Crystal-Based Electrical Tunable Optical Filter. Crystals 2022, 12, 992. [Google Scholar] [CrossRef]
- Gryga, M.; Ciprian, D.; Gembalova, L.; Hlubina, P. Sensing based on Bloch surface wave and self-referenced guided mode resonances employing a one-dimensional photonic crystal. Opt. Express 2021, 29, 12996. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 1965, 55, 1205–1208. [Google Scholar] [CrossRef]
- Devore, J.R. Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 1951, 41, 416–419. [Google Scholar] [CrossRef]
- Goyal, A.K.; Kumar, A.; Massoud, Y. Thermal Stability Analysis of Surface Wave Assisted Bio-Photonic Sensor. Photonics 2022, 9, 324. [Google Scholar] [CrossRef]
- Pochi, Y. Electromagnetic propagation in periodic stratified media I. General theory. J. Opt. Soc. Am. 1977, 67, 423–438. [Google Scholar]
- Hosseini, A.; Nejati, H.; Massoud, Y. Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors. Opt. Exp. 2008, 16, 1475–1480. [Google Scholar] [CrossRef]
- Hosseini, A.; Massoud, Y. Optical range microcavities and filters using multiple dielectric layers in metal-insulator-metal structures. JOSA A 2007, 24, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Nieuwoudt, A.; Massoud, Y. Efficient simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi. Opt. Exp. 2006, 14, 7291–7298. [Google Scholar] [CrossRef]
- Yeh, P.; Yariv, A.; Cho, A.Y. Optical surface waves in periodic layered media. Appl. Phys. Lett. 1978, 32, 104–105. [Google Scholar] [CrossRef]
- Charalambos, C.; Siapkas, D.I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 2002, 41, 3978–3987. [Google Scholar]
- Wan, N.; Meng, F.; Schröder, T.; Shiue, R.; Chen, E.H.; Englund, D. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre. Nat. Commun. 2015, 6, 7762. [Google Scholar] [CrossRef]
- Augustyniak, A.; Zdanowicz, M.; Osuch, T. Self-Similarity Properties of Complex Quasi-Periodic Fibonacci and Cantor Photonic Crystals. Photonics 2021, 8, 558. [Google Scholar] [CrossRef]
- Gevorgyan, A.H. Broadband optical diode and giant nonreciprocal tunable light localization. Opt. Mater. 2021, 113, 110807. [Google Scholar] [CrossRef]
- Pirotta, S.; Xu, X.G.; Delfan, A.; Mysore, S.; Maiti, S.; Dacorro, G.; Patrini, M.; Galli, M.; Guizzetti, G.; Dajoni, D.; et al. Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves. J. Phys. Chem. C 2013, 117, 6821. [Google Scholar] [CrossRef]
- Angelini, A.; Enrico, E.; Leo, N.D.; Munzert, P.; Boarino, L.; Michelotti, F.; Giorgis, F.; Descrovi, E. Fluorescence diffraction assisted by Bloch surface waves on a one-dimensional photonic crystal. New J. Phys. 2013, 15, 073002. [Google Scholar] [CrossRef]
- Hosseini, A.; Massoud, Y. A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express 2006, 14, 11318–11323. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.K.; Dutta, H.S.; Pal, S. Design and analysis of photonic crystal micro-cavity based optical sensor platform. AIP Conf. Proc. 2016, 1724, 020005. [Google Scholar] [CrossRef]
- Meng, Q.-Q.; Zhao, X.; Lin, C.-Y.; Chen, S.-J.; Ding, Y.-C.; Chen, Z.-Y. Figure of Merit Enhancement of a Surface Plasmon Resonance Sensor Using a Low-Refractive-Index Porous Silica Film. Sensors 2017, 17, 1846. [Google Scholar] [CrossRef] [PubMed]
- Quyang, Q. Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 2016, 6, 28190. [Google Scholar]
- Sharma, A.K. Plasmonic biosensor for detection of hemoglobin concentra-tion in human blood: Design considerations. J. Appl. Phys. 2013, 114, 044701. [Google Scholar] [CrossRef]
- Brahmachari, K.; Ray, M. Modelling and performance analysis of a plasmonic biosensor comprising of silicon and chalcogenide materials for detecting refractive index variations of hemoglobin in near infrared. Optik 2016, 127, 3517–3522. [Google Scholar] [CrossRef]
S.N. | Fibonacci Series Member (Sn) | QPhC |
---|---|---|
1 | S | A |
2 | S | AB |
3 | S | BA |
4 | S | BAB |
5 | S | BABBA |
6 | S | BABBABAB |
7 | S6 | BABBABABBABBA |
Analyte Refractive Index | Angular Interrogation (at 750 nm Wavelength) | Wavelength Interrogation (at 63.0° Incidence Angle) | ||||||
---|---|---|---|---|---|---|---|---|
Incidence Angle | Sensitivity (°/RIU) | FWHM (°) | FOM (1/RIU) | Operating Wavelength (nm) | Sensitivity (nm/RIU) | FWHM (nm) | FOM (1/RIU) | |
1.00 | 63.00° | - | 0.045 | - | 750.00 | - | 0.33 | - |
1.02 | 63.24° | 12.00 | 0.046 | 260.9 | 751.63 | 81.50 | 0.34 | 239.7 |
1.04 | 63.47° | 11.75 | 0.047 | 250.0 | 753.33 | 83.25 | 0.35 | 237.9 |
1.06 | 63.71° | 11.83 | 0.047 | 251.7 | 755.08 | 84.67 | 0.36 | 235.2 |
1.08 | 63.97° | 12.13 | 0.044 | 275.7 | 756.93 | 86.63 | 0.37 | 234.1 |
1.10 | 64.23° | 12.30 | 0.044 | 279.5 | 758.86 | 88.60 | 0.39 | 227.2 |
1.20 | 65.73° | 13.65 | 0.056 | 243.8 | 770.05 | 100.25 | 0.45 | 222.8 |
1.30 | 67.66° | 15.53 | 0.059 | 263.2 | 785.66 | 118.87 | 0.53 | 224.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goyal, A.K.; Massoud, Y. Interface Edge Mode Confinement in Dielectric-Based Quasi-Periodic Photonic Crystal Structure. Photonics 2022, 9, 676. https://doi.org/10.3390/photonics9100676
Goyal AK, Massoud Y. Interface Edge Mode Confinement in Dielectric-Based Quasi-Periodic Photonic Crystal Structure. Photonics. 2022; 9(10):676. https://doi.org/10.3390/photonics9100676
Chicago/Turabian StyleGoyal, Amit Kumar, and Yehia Massoud. 2022. "Interface Edge Mode Confinement in Dielectric-Based Quasi-Periodic Photonic Crystal Structure" Photonics 9, no. 10: 676. https://doi.org/10.3390/photonics9100676
APA StyleGoyal, A. K., & Massoud, Y. (2022). Interface Edge Mode Confinement in Dielectric-Based Quasi-Periodic Photonic Crystal Structure. Photonics, 9(10), 676. https://doi.org/10.3390/photonics9100676