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Abstract: In this article, we introduce a framework for two-qutrit Werner states tomography with
Gaussian noise. The measurement scheme is based on the symmetric, informationally complete
positive operator-valued measure. To make the framework realistic, we impose the Gaussian noise
on the measured states numbers. Through numerical simulation, we successfully reconstructed the
two-qutrit Werner states in various experimental scenarios and analyzed the optimal scenario from
four aspects: fidelity, purity, entanglement, and coherence.
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1. Introduction

Quantum state tomography (QST) plays an important role in the field of quantum
information. It can determine the mathematical representation of an unknown quantum
system by measuring a large number of replicated quantum states to estimate them in real
time [1]. The tomography of entangled photon pairs, as a specific form of QST, has been
used to characterize the quantum states of light [2]. Because noise and systematic errors
exist in any quantum measurement process, statistical methods are needed to reconstruct
the actual quantum states [3]. There are various methods of quantum-state estimation, but
we can compare the efficiency of each method to choose the optimal estimation method.

There are many works about QST in different noise scenarios. In the work of Ref. [4],
Artur Czerwinski introduced a framework for QST and the entanglement quantification
of two-qubit Werner states that were encoded on photon pairs in the polarization degree
of freedom. The Poisson noise was imposed on the measured photon counts. In the
work of Ref. [5], the author investigated the problem of entanglement characterization
by polarization measurements combined with maximum likelihood estimation (MLE). A
realistic scenario was considered with measurement results distorted by three types of
errors: the Poisson noise, dark counts, and random rotations. In the work of Ref. [6], the
author introduced a framework for Hamiltonian tomography of multiqubit systems with
random noise. The quantum quench protocol to reconstruct a many-body Hamiltonian
was adopted by local measurements that were distorted by random unitary operators and
time uncertainty. However, as different scenarios, other kinds of experimental noise also
need to be considered. More specifically, it is also interesting that we study QST in the
case of Gaussian noise, which is more complex than Poisson noise. Moreover, quntum
coherence also should be studied as an important research object to evaluate the QST model
because it is also a special feature of quantum mechanic such as entanglement and other
quantum correlations.

The goal of our scheme is to estimate the quantum states by using the results of mea-
surements. In the case of a positive operator-valued measure (POVM) [7], if a measurement
scheme provides complete knowledge about the state of the system, we can say that is
an informationally complete POVM [8]. For a given quantum system, there are various
different measurement operators that can obtain the complete characterization of the quan-
tum state. In our work, we utilize a particular case of POVM that is called a symmetic,
informationally complete, positive operator-valued measure (SIC-POVM).
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In the model of our article, we consider that state tomography and quantum corre-
lations quantification can be described by two-qutrit Werner states. The SIC-POVMs are
used to obtain the probability corresponding to each measurement outcomes. In order to
make the model more realistic, the influence of Gaussian noise on the measurement process
is imposed. Then, the density matrices of the estimated unknown states are obtained
by a modified χ2-estimator [9]. We perform numerical simulation experiments on noise
scenarios of different intensities and graphically illustrate the accuracy of our model under
these scenarios.

Our paper is organized as follows: in Section 2, the method of state reconstruction
is described; in Section 3, we display and analyze the numerical results and analysis; in
Section 4, we discuss our work in this paper; and in Section 5, we state our conclusions.

2. Materials and Methods
2.1. Two-Qutrit Werner State

In 1989, R. Werner introduced the non-classical correlation mixed quantum states [10].
Among these, the two-qubit Werner state can be expressed as follows:

ρ
2q
w = (U ⊗U)ρ

2q
w

(
U† ⊗U†

)
, (1)

where U is a unitary operator. Additionally, the meaning of Formula (1) is the density
matrices of Werner states remain unchanged after the U ⊗U transformation in Formula (1).
Furthermore, Werner states can be expressed as

ρw = ηT + ξ I , (2)

where η and ξ are two real paramters; I denotes the identity operator; and T is a flip
operator, which acts as T(|ψ1〉 ⊗ |ψ2〉) = |ψ2〉 ⊗ |ψ1〉.

Suppose {|i〉 | i = 1, 2, · · · , d} denotes the standard basis in d-dimensional Hilbert
space, then T takes the form:

T =
d

∑
i,j=1

|i〉〈j| ⊗ |j〉〈i|. (3)

Due to Tr
(

ρ
2q
w

)
= 1, the two-qutrit Werner states can be expressed as

ρab
w (α) =

1− α

9
Iab + α|ψ〉ab〈ψ|, 0 6 α 6 1. (4)

where Iab is the identity matrix of 9 × 9; the quantum state |ψ〉ab = 1√
3
(|00〉+ |11〉+ |22〉)

is the Bell state composed of subsystems A and B (with the largest degree of entanglement);
and α ∈ [0, 1] is the distribution coefficient, which determines the proportion of Iab and
|ψ〉ab in the Werner state.

Werner states play an important role in quantum information theory, for instance,
entanglement purification [11]. They have also been used for a description of noisy quan-
tum channels [12]. The properties of Werner states in arbitrary dimensions, for example,
concurrence-based entanglement measures [13], remain relevant topics. Therefore, it ap-
pears justified to investigate the quantum tomography of two-qutrit Werner states with
noisy measurements.

2.2. Measurements

Let us assume there is a set of d2 normalized vectors
{
|εi〉 | i = 1, 2, · · · , d2} that

belong to d-dimensional Hilbert space Hd such that

∣∣〈εi|ε j〉
∣∣2 =

{
1

d+1 , i 6= j
1, i = j

. (5)
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Then, the set of rank-one projectors Ek defined as

En =
1
d
|εn〉〈εn|, n = 1, 2, · · · , d2 (6)

constitutes a symmetric, informationally complete, positive operator-valued measure (SIC-POVM).
The measurement scheme implemented in our work is based on the SIC-POVM in

three-dimensional Hilbert space. When dim(H) = 3, the SIC-POVM can be described by
the following nine vectors:

|ε1〉 =
1√
2
(|1〉+ |0〉),

|ε2〉 =
1√
2

(
e

2πi
3 |1〉+ e−

2πi
3 |0〉

)
,

|ε3〉 =
1√
2

(
e−

2πi
3 |1〉+ e

2πi
3 |0〉

)
,

|ε4〉 =
1√
2
(|2〉+ |1〉),

|ε5〉 =
1√
2

(
e

2πi
3 |2〉+ e−

2πi
3 |1〉

)
,

|ε6〉 =
1√
2

(
e−

2πi
3 |2〉+ e

2πi
3 |1〉

)
,

|ε7〉 =
1√
2
(|0〉+ |2〉),

|ε8〉 =
1√
2

(
e

2πi
3 |0〉+ e−

2πi
3 |2〉

)
,

|ε9〉 =
1√
2

(
e−

2πi
3 |0〉+ e

2πi
3 |2〉

)
.

(7)

where {|0〉, |1〉 |2〉} denotes the standard basis in Hilbert space. Then, our measurement
operators can be defined: M

′
n = 1

3 |εn〉〈εn|, n = 1, 2, 3, · · · , 9, which satisfy ∑n M
′
n = I3.

These nine measurement operators are sufficient to perform single-qubit tomography [14].
Additionally, these measurements are minimal, but they allow for efficient and reliable
single-qubit tomography. SIC-POVMs, which belong to the class of minimal informa-
tionally complete quantum measuremenmts, are in many ways optimal since the ideal
measurements in quantum physics are not orthogonal bases [15]. Therefore, for two-qutrit
Werner states characterized by Formula (4), we can utilize Mk = M

′
n ⊗M

′
m, k = 1, 2, · · · , 81,

to represent the measurement operators.

2.3. Quantum-State Estimation with Gaussian Noise

Suppose a quantum system is in one of a number of states |ψi〉, where i is an index, with
respective probabilities pi. The density operator for the system is defined by the following
equation:

ρ = ∑
i

pi|ψi〉〈ψi|. (8)

For the state |ψi〉, the probability of obtaining measurement outcome k is P(k|i ) =
〈ψi|Mk|ψi〉. Then, the probability of obtaining measurement outcome k is

P(k) = ∑
i

P(k|i )pi = Tr(Mkρ). (9)

Hence, for the Werner states ρab
w (α), the probability of obtaining measurement outcome k is

P(k) = Tr
(

Mkρab
w (α)

)
. (10)
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Suppose the number of quantum states we use for each measurement is N; then, the
number of quantum states with the measurement outcome k is

nk = NP(k) = NTr
(

Mkρab
w (α)

)
. (11)

To make our model more realistic, we impose Gaussian noise. Under the influence
of Gaussian noise, N becomes Ñ, which obeys the normal distribution: Ñ ∼ N

(
µ, σ2),

that is to say, the number of quantum states for each measurement is selected randomly
from the Gaussian distribution characterized by the mean value µ and standard deviation
σ. Let N = µ, thus, after imposing Gaussian noise, the number of quantum states with the
measurement result of k can be modeled numerically as

ñk = ÑP(k) = ÑTr
(

Mkρab
w (α)

)
. (12)

Because Ñ is a random variable subject to normal distribution, it still follows the
normal distribution after multiplication by a non-zero constant P(k), but the expectation
and variance will change, that is, the expectation will become µP(k), and the variance will
become σ2P(k)2. Hence, ñk obeys the following normal distribution:

ñk ∼ N
(

µTr
(

Mkρab
w (α)

)
, σ2
(

Tr
(

Mkρab
w (α)

))2
)

. (13)

However, when performing QST, we assume that we know nothing about the states.
For this reason, the expected number of unknown states with measurement result k is

ck = µTr(Mk$), (14)

where $ represents a general 9× 9 density matrix. According to Cholesky’s decomposition [2,16],
the unknown quantum state $ we need to estimate can be expressed as follows:

$ =
R†R

Tr(R†R)
, (15)

where

R =


r1 0 · · · 0

r2 + r3 j r4 · · · 0
...

...
...

...
r65 + r66 j r67 + r68 j · · · r81

, (16)

and j is the imaginary unit; then, we only need to estimate ri, i = 1, 2, · · · , 81, which are
81 real parameters.

For any α that satisfies 0 ≤ α ≤ 1, the process of quantum-state estimation is reduced to
determining the 81 parameters that characterize R. To find the 81 parameters that optimally
fit the noisy measurements, we use a modified χ2-estimator, see, Ref. [9]. Thus, we search
for the minimum value of the following function:

χ2(r1, r2, ..., r81) =
81

∑
k=1

[
ñk − ck√

ñk + 1

]2

=
81

∑
k=1

 ÑTr
(

Mkρab
w (α)

)
− µTr(Mk$)√

ÑTr
(

Mkρab
w (α)

)
+ 1

2

.

(17)

This procedure allows one to simulate an experimental scenario for any input state
ρab

w (α). First, we generate the noisy quantum states numbers Formula (12), and then we can
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recover the state by finding the parameters ri, i = 1, 2, · · · , 81, for which the χ2 function
reaches its minimum.

3. Numerical Results and Analysis

When the numerical simulation of our model is conducted, the α interval of [0,1] is
divided into 20 equal parts, and each one is put into Formula (17) to find the corresponding
ri(i = 1, 2, · · · , 81); consequently, the corresponding $ are computed. In different noise
scenarios, the N and σ are changed, i.e., N = 1000, 100, 10 and σ = 1, 10, 20. Additionally,
these scenarios are compared in the form of images from the perspectives of fidelity, purity,
entanglement, and coherence. Quantum fidelity is computed to quantify the accuracy of
states reconstruction. Quantum purity is computed to analyze how much the states are
mixed. The concurrence and l1 norm of coherence are used to evaluate how well quantum
features are preserved for the reconstructed states.

3.1. Fidelity

First, every input Werner state ρab
w is compared with the estimated quantum state $, by

computing the quantum fidelity:

F
(

$, ρab
w (α)

)
=

[
Tr
√√

$ρab
w (α)

√
$

]2
. (18)

It is commonly used to assess the accuracy of QST frameworks, in particular, under
imperfect measurement settings, see Ref. [17]. Obviously, when the estimated quantum
states $ are equal to the input Werner states ρab

w (α), the theoretical value of F is 1. When
the estimated quantum states $ are not equal input Werner states ρab

w (α), the higher the
fidelity, the better the experimental results.

In Figure 1, σ is 1 and N is variable in the current situation. The blue, green, and red
dots represent the fidelity when N = 1000, 100, 10, respectively. It can be clearly seen that the
fidelity F is almost close to the theoretical value 1 when N is 1000. When N is equal to 100,
the approximate degree between the estimated values and the theoretical value 1 is obviously
not as close as the condition when N is equal to 1000. When N is equal to 10, the estimated
values and the theoretical value 1 have a large deviation, only a few points are close to the
theoretical value 1. In addition, in the current situation (N = 10), when α gradually increases,
F generally shows a decreasing trend, which means that the fidelity of the reconstructed
states is lower when input Werner states ρab

w (α) are closer to the pure states.
In Figure 2, N is equal to 1000 and σ is variable in the current situation. The blue, green,

and red dots represent the fidelity F when σ = 20, 10, 1, respectively. It can be clearly seen
that when σ = 1, the fidelity F is close to the theoretical value 1, but as σ increases, our
experimental fidelity F starts to drop significantly. This shows that our experimental fidelity
F gradually tends to deviate from the theoretical value 1 as the σ increases.

Figure 1. Comparison of fidelity when σ = 1.
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Figure 2. Comparison of fidelity when N = 1000.

Since fidelity is the most important factor in evaluating the efficiency of our model,
we need to display our experimental results in a more intuitive histogram. As shown in the
Figure 3, we have taken five special values of α, and we can more intuitively see that when
σ is fixed at 1, the larger N is, the higher the fidelity of the experimentally reconstructed
quantum state is. Similarly, as shown in the Figure 4, when N is fixed to 1000, the smaller σ
is, the higher the fidelity of the quantum state reconstructed by the experiment is. When
N = 1000, σ = 1, the fidelity of the reconstructed states reaches above 0.99, which is an
excellent result.

Figure 3. Comparison of fidelity when σ = 1, α is divided into quarters in the interval 0 to 1.

Figure 4. Comparison of fidelity when N = 1000, α is divided into quarters in the interval 0 to 1.

In general, when N is larger and σ is smaller, the efficiency of our model is better. In
the Figures 5 and 6, when N = 1000, σ = 1, we show the density matrix tomography of the
experimentally reconstructed two-qutrit Werner states of α = 0.5 and 1.
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Figure 5. Density matrix when α = 0.5.

Figure 6. Density matrix when α = 1.

The tomography of the two-qubit Werner states can also be applied to our model; of
course, we need to replace the SIC-POVM in the three-dimensional Hilbert space with the
SIC-POVM in the two-dimensional Hilbert space. For example, when dim(H) = 2, the
SIC-POVM can be described by the following four vectors:

|εa〉 = |1〉,

|εb〉 =
√

2
3
|0〉+ 1√

3
|1〉,

|εc〉 =
√

2
3

e
2πi

3 |0〉+ 1√
3
|1〉,

|εd〉 =
√

2
3

e
4πi

3 |0〉+ 1√
3
|1〉.

(19)

As shown in the Figure 7, after we perform the same experimental process on the two-
qubit Werner states ρ

2q
w (α) = 1−α

4 Iab + α|ψ′〉ab〈ψ′|, |ψ′〉ab = 1√
2
(|00〉+ |11〉), 0 6 α 6 1, in

terms of fidelity, when N = 1000 and 100 (σ = 1), similar results can be obtained for the
two-qutrit Werner states. However, when N = 10 (σ = 1), as shown in the Figure 8, we
find that the fidelity of the two-qubit Werner states does not obviously decrease with the
increase in α but fluctuates irregularly.
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Figure 7. Fidelity of two-qubit Werner states.

Figure 8. N = 10, fidelity of 2-qubit Wermer states.

3.2. Purity

Let us analyze the purity of the experimental results of two-qutrit Werner states.
Quantum purity is computed to analyze how much the states are mixed. We utilize
the trace of the density matrix’s square to express purity. Hence, we use γ

(
ρab

w (α)
)
=

Tr
((

ρab
w (α)

)2
)

to calculate the theoretical purity and use γ($) = Tr
(
$2) to calculate the

estimated states’ purity [7].
In Figure 9, σ is 1 and N is variable in the current situation. The black dots represent

the theoretical purity values, and the blue, green, and red dots represent the purity values
of the quantum states estimated when N = 1000, 100, 10, respectively. It can be seen that
when N = 1000, the estimated values are almost close to the theoretical values. When
N = 100, the closeness of the estimated values to the theoretical values is obviously worse
than when N = 1000. When N = 10, the estimated values obviously deviate from the
theoretical values. It is worth noting that at α = 0.4, whether N = 1000, 100, or 10, the
estimated values of purity are the same; when α increases from 0.4 to 1, the gap between
these three scenarios gradually increase.

In Figure 10, N is 1000 and σ is variable in the current situation. The black dots
represent the theoretical purity values, and the blue, green, and red dots represent the
purity when σ = 20, 10, 1, respectively. We can clearly see that when σ = 1, the estimated
values are almost close to the theoretical values. However, as σ increases, our experimental
accuracy of purity tends to drop significantly. This shows that our experimental values
gradually tend to deviate from the theoretical values as the σ increases.

In a word, when N is larger and σ is smaller, the closer the experimental results of
purity are to the theoretical value.
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Figure 9. Comparison of purity when σ = 1.

Figure 10. Comparison of purity when N = 1000.

3.3. Entanglement

For two-qutrit Werner states ρab
w (α), we compute the concurrence, C

(
ρab

w (α)
)

, which
quantifies the amount of entanglement in the system described by the density matrix
ρab

w [18,19]. Then, the entanglement quantification of two-qutrit Werner states can be
represented as follows:

C
(

ρab
w (α)

)
= max{0, λ1 − λ2 − · · · − λn}, (20)

where λi is the eigenvalue’s modulo of the density matrix ρab
w , and λ1 ≥ λ2 ≥ · · · ≥ λn.

For any density matrix ρ, the concurrence satisfies 06 C(ρ) 61. We have C(ρ) = 1
for maximally entangled states and C(ρ) = 0 for separate states. Thus, the concurrence
can be considered an entanglement monotone, which means it can be applied to quantify
quantum entanglement, see Refs. [20–23]. Concurrence is directly connected to another
fundamental measure, which is called the entanglement of formation [24,25].

In Figure 11, σ is 1 and N is variable in the current situation. The black dots represent
the theoretical values of the concurrence, and the blue, green, and red dots represent the
concurrence of the quantum states estimated when N = 1000, 100, 10, respectively. It can
be seen that when N = 1000, the estimated values are very close to the theoretical values.
When N is 100, it also can be seen that the deviation between the estimated values and the
theoretical values is greater than when N is 1000. When N is reduced to 10, the estimated
values almost completely deviate from the theoretical values.

In Figure 12, N = 1000 and σ is variable in the current situation. The black dots
represent the theoretical concurrence values, and the blue, green, and red dots represent
the concurrence when σ = 20, 10, 1, respectively. It can be clearly seen that when σ = 1, the
experimental concurrence values are almost close to the theoretical values. However, as σ
increases, the experimental accuracy of concurrence starts to drop significantly. This shows
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that the experimental values gradually tend to deviate from the theoretical values as the
σ increases.

Figure 11. Comparison of concurrence: σ = 1.

Figure 12. Comparison of concurrence: N = 1000.

3.4. Coherence

Under a fixed reference basis, the l1 norm of coherence of state ρ is defined by

l1(ρ) = ∑
i 6=j

∣∣ρi,j
∣∣, (21)

hence, we can obtain
l1
(

ρab
w (α)

)
= 2α , 0 6 α 6 1, (22)

and it can be easily found that the l1 norm coherence of ρ
2q
w (α) is monotonic and propor-

tional to the parameter α.
Although many coherence measures have been proposed, the l1 norm of coherence

stands out as one of the most important measures that is easily computable [26]. It is useful
in studying speedup in quantum computation, such as in the Deutsch–Jozsa algorithm [27]
and the Grover algorithm [28]. It features prominently in alternative formulations of un-
certainty relations, complementarity relations [29], and wave-particle duality in multipath
interferometers [30]. It plays a crucial role in quantifying the cohering and decohering
powers of quantum operations [31]. In addition, the l1 norm of coherence sets an upper
bound for another important coherence measure, the robustness of coherence [32].

In Figure 13, σ is 1 and N is variable in the current situation. The black dots represent
the theoretical values of the l1 norm, and the blue, green, and red dots represent the l1 norm
of the quantum state estimated when N = 1000, 100, 10, respectively. It can be seen that
when N = 1000, the estimated values are very close to the theoretical values. When N is
100, it also can be found that the deviation between the estimated values and the theoretical
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values is greater than when N = 1000. When N is reduced to 10, the estimated values
almost completely deviate from the theoretical values.

In Figure 14, N is 1000 and σ is variable in the current situation. The black dots
represent the theoretical l1 norm values, and the blue, green, and red dots represent the
l1 norm the l1 norm of coherence when σ = 20, 10, 1, respectively. It can be clearly seen
that when σ = 1, the experimental l1 norm of the coherence values is almost close to the
theoretical values. However, as σ increases, the experimental accuracy of the l1 norm starts
to drop significantly. This shows that the experimental values gradually begin to deviate
from the theoretical values as the σ increases.

Figure 13. Comparison of coherence: σ = 1.

Figure 14. Comparison of coherence: N = 1000.

4. Discussion

In this article, we introduce a method for estimating two-qutrit Werner states under
Gaussian noise based on SIC-POVMs. The efficiency of our framework or our model’s
resistance to Gaussian noise is shown by how much the experimental values deviate from
the theoretical values. It is investigated in the scenarios of σ = 1, N = 1000, 100, 10, and
N = 1000, σ = 20, 10, 1. Additionally, these scenarios were compared in the form of images
from the perspectives of fidelity, purity, entanglement, and coherence.

We conclude that when σ = 1 and N = 1000, our model can resist Gaussian noise
well, but when N decreases to 100, the robustness of our model starts to drop. When N
decreases to 10, our model’s resistance to Gaussian noise is almost lost. We also conclude
that when N = 1000 and σ = 1, our model can resist Gaussian noise very well, but when
σ increases to 10, the robustness of our model starts to drop. When σ increases to 20, our
model’s resistance to Gaussian noise is almost lost. Therefore, we can speculate that when
both the N is larger and σ is smaller, our model is more resistant to Gaussian noise.

However, it is worth noting that when N = 10 and σ = 1, if we increase α to be close to
1, the experimental values will deviate from the theoretical values to a certain extent, which
means that when the Werner states are pure or close to pure, the fidelity of our model will
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be greatly compromised even if the number of input quantum states is not large enough.
For the other three perspectives such as purity, entanglement, and coherence, our model
leads to similar conclusions. This shows that Gaussian noise has a relatively large influence
on the reconstruction of the pure state in our model if N is not large enough or σ is not
small enough. However, in the case of Poisson noise, regardless of the value of N, as α
tends to 1, the estimated values converge to the theoretical values, see Ref. [4]. This is the
major difference between Gaussian noise and Poisson noise under the QST model.

We also found that if the dimension of Werner states is increased from two-dimensional
to three-dimensional, the calculation time of our algorithm will increase significantly, which
will cause great trouble to the tomography of higher dimensional quantum states in the
future. To solve this problem, we can limit the Gaussian random variable Ñ, such as limiting
Ñ ∈ (µ− 3σ, µ + 3σ), because the probability of a Gaussian random variable falling in this
interval is 0.997. In addition, when solving the minimum point of Formula (17), we used
the minimize function in Python. We believe that there will be other algorithms to replace
it more effectively, and we will be committed to solving this problem in future work.

5. Conclusions

This paper provides a method for two-qutrit Werner states tomography under Gaus-
sian noise. From the perspectives of fidelity, purity, entanglement, and coherence, we
conclude that when σ = 1 and N = 1000, our model can resist Gaussian noise well. In
future studies, we will investigate more precisely how the values of σ and N affect the
experimental precision. In addition, we will study other quantum states under this model.
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