Design of Ultra-High-Aperture Dual-Range Athermal Infrared Objectives
Abstract
:1. Introduction
2. Proposed Principles and Recommendations
- Select the values of the main parameters of the developed objective, based on the requirements for the entire device.
- Following the relevant recommendations that are presented above, select the lens and construction materials that minimize the optical powers of individual lenses in the initial configuration (Figure 1). To this end, use the system of Equation (1), preliminarily considering d2→0.
- Based on the obtained values of the optical powers of individual lenses and to achieve ultra-high relative aperture, separate the power component according to the relevant recommendations that are presented above.
- Ensure d1 > 0 by replacing the first lens of the correction component according to the relevant recommendations above.
- For the refractive-diffractive version of the objective, select the materials for the two-layer DOE microstructure to suppress the spectral and angular selectivity of the DE.
- Optimize the optical scheme that has been obtained as a result of steps 1–5 using a commercial optical design software. Execute the aplanatic condition, and maximize the relative aperture.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tissot, J.L.; Trouilleau, C.; Fieque, B.; Crastes, A.; Legras, O. Uncooled microbolometer detector: Recent developments at Ulis. Opto-Electron. Rev. 2006, 14, 25–32. [Google Scholar] [CrossRef]
- Keskin, S.; Akin, T. The first fabricated dual-band uncooled infrared microbolometer detector with a tunable micro-mirror structure. Proc. SPIE 2012, 8353, 11. [Google Scholar]
- Smith, E.M.; Panjwani, D.; Ginn, J.; Warren, A.P.; Long, C.; Figuieredo, P.; Smith, C.; Nath, J.; Perlstein, J.; Walter, N.; et al. Dual band sensitivity enhancements of a VOx microbolometer array using a patterned gold black absorber. Appl. Opt. 2016, 55, 2071–2078. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, T.H. Athermalization of optical instruments from the optomechanical viewpoint. Proc. SPIE 1992, 10265, 131–159. [Google Scholar]
- Ford, E.H. Active temperature compensation of an infrared zoom lens. Proc. SPIE 1997, 3129, 138–143. [Google Scholar]
- Tyagur, V.M.; Kucherenko, O.K.; Murav’ev, A.V. Passive optical athermalization of an IR three-lens achromat. J. Opt. Technol. 2014, 81, 199–203. [Google Scholar] [CrossRef]
- Medvedev, A.V.; Grinkevich, A.G.; Knyazeva, S.N. Athermalization of objectives of sighting and observation complexes as the means of functioning support of the facilities of Armament of Armored Force Vehicles (AAFV). Photonics Russ. 2016, 56, 94–109. [Google Scholar]
- Greisukh, G.I.; Ezhov, E.G.; Levin, I.A.; Stepanov, S.A. Design of achromatic and apochromatic plastic microobjectives. Appl. Opt. 2010, 49, 4379–4384. [Google Scholar] [CrossRef] [PubMed]
- Greisukh, G.I.; Danilov, V.A.; Ezhov, E.G.; Antonov, A.I.; Usievich, B.A. Diffractive elements in optical systems of middle and double IR range. Photonics Russ. 2020, 14, 160–169. [Google Scholar]
- Hudson, R.D., Jr. Infrared System Engineering; Wiley: New York, NY, USA, 2006; p. 642. ISBN 978-0-470-09935-3. [Google Scholar]
- Schott Source. Available online: http://www.schott.com/en-gb/products/ir-materials-p1000261/downloads/ (accessed on 28 June 2022).
- UMICORE Electro-Optic Materials Source. Available online: https://eom.umicore.com/en/infrared-solutions/infrared-optics/intrsoducing-gasir/ (accessed on 28 June 2022).
- CDGM Source. Available online: http://www.cdgmgd.com/go.htm?url=goods&k=HWS_Infrared_Glass (accessed on 28 June 2022).
- Levin, I.A.; Stepanov, S.A. Passive athermalization of refractive-diffractive plastic lenses. Comput. Opt. 2017, 41, 694–700. [Google Scholar] [CrossRef]
- Romanova, G.E.; Pyś, G. Research of aberration properties and passive athermalization of optical systems for infrared region. Proc. SPIE 2015, 9626, 8. [Google Scholar]
- Schaub, M.; Schwiegerling, J.; Fest, E.C.; Symmons, A.; Shepard, R.H. Molded Optics Design and Manufacture; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2011; p. 260. ISBN 978-1-4398-3258-5. [Google Scholar]
- Zhang, B.; Dong, K.; Piao, M.; Wang, J.; Jia, R.; Jiang, H. Optimal design of multilayer diffractive optical element in wide angle of incidence. Opt. Commun. 2022, 502, 127340. [Google Scholar] [CrossRef]
- Greisukh, G.I.; Ezhov, E.G.; Stepanov, S.A.; Danilov, V.A.; Usievich, B.A. Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure. J. Opt. Technol. 2015, 82, 308–311. [Google Scholar] [CrossRef]
- Mao, S.; Zhao, J.; He, D. Analytical and comprehensive optimization design for multilayer diffractive optical elements in infrared dual band. Opt. Commun. 2020, 472, 125831. [Google Scholar] [CrossRef]
- Greisukh, G.I.; Danilov, V.A.; Stepanov, S.A.; Antonov, A.I.; Usievich, B.A. Spectral and angular dependences of the efficiency of three-layer relief-phase diffraction elements of the IR range. Opt. Spectrosc. 2018, 125, 60–64. [Google Scholar] [CrossRef]
- Greisukh, G.I.; Danilov, V.A.; Ezhov, E.G.; Kazin, S.V.; Usievich, B.A. Highly efficient double-layer diffraction microstructures based on new plastics and molded glasses. Photonics 2021, 8, 327. [Google Scholar] [CrossRef]
- Greisukh, G.I.; Ezhov, E.G.; Stepanov, S.A. Taking diffractive efficiency into account in the design of refractive/diffractive optical systems. J. Opt. Technol. 2016, 83, 163–167. [Google Scholar] [CrossRef]
- SemiConductor Devices. Available online: https://www.scd.co.il/wp-content/uploads/2019/07/Bird640-17-ceramic_brochure_v3_PRINT.pdf (accessed on 28 June 2022).
- Rahmlow, T.D., Jr.; Lazo-Wasem, J.E.; Vizgaitis, J.N.; Flanagan-Hyde, J. Dual-band antireflection coatings on 3rd Gen lenses. Proc. SPIE 2011, 8012, 9. [Google Scholar]
- Zemax Source. Available online: http://www.zemax.com/pages/opticstudio/ (accessed on 28 June 2022).
- Greisukh, G.I.; Ezhov, E.G.; Zakharov, O.A.; Kazin, S.V. Influence of secondary diffraction orders on the quality of image formed by a Mid-IR refractive-diffractive optical system. Opt. Spectrosc. 2021, 129, 482–488. [Google Scholar] [CrossRef]
- Laikin, M. Lens Design, 4th ed.; CRC Press: New York, NY, USA, 2006; p. 512. ISBN 0-8493-8278-5. [Google Scholar]
- Bin, F.; Manman, Y. Athermalization design for infrared dual-band double-layer harmonic diffractive optical system. Optik 2021, 227, 166097. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Y.; Chen, S.; Chen, H.; Guo, P. Optical design and athermalization analysis of infrared dual band refractive-diffractive telephoto objective. Proc. SPIE 2017, 10250, 5. [Google Scholar]
- Alaruri, S.D. f/1.6 diffraction-limited air-spaced Cooke triplet photographic lens designs for MWIR and LWIR imaging applications: Geometrical optics performance comparison between Ge–ZnSe–Ge and Si–Ge–Si triplet designs using Zemax. Optik 2016, 127, 254–258. [Google Scholar] [CrossRef]
- Wenfeng, M.; Xin, Z.; Hemeng, Q.; Jizhen, Z.; Lingjie, W. Broad dual-band kinoform infrared double-layer diffractive optical system design. Acta Optica Sinica 2014, 34, 1022002. [Google Scholar] [CrossRef]
- Chang-Jiang, F.; Zhao-Qi, W.; Lie, L.; Mei, Z.; Hai-Ying, F. Design of infrared inverted telephoto-optical system with double-layer harmonic diffractive element. Chin. Phys. Lett. 2007, 24, 1973–1976. [Google Scholar] [CrossRef]
- Yang, H.; Xue, C.; Li, C.; Wang, J. Optimal design of multilayer diffractive optical elements with effective area method. Appl. Opt. 2016, 55, 1675–1682. [Google Scholar] [CrossRef]
- Yang, C.; Yang, H.; Li, C.; Xue, C. Optimization and analysis of infrared multilayer diffractive optical elements with finite feature sizes. Appl. Opt. 2019, 58, 2589–2595. [Google Scholar] [CrossRef] [PubMed]
- Laborde, V.; Loicq, J.; Habraken, S. Modeling infrared behavior of multilayer diffractive optical elements using Fourier optics. Appl. Opt. 2021, 60, 2037. [Google Scholar] [CrossRef] [PubMed]
- Laborde, V.; Loicq, J.; Hastanin, J.; Habraken, S. Multilayer diffractive optical element material selection method based on transmission, total internal reflection, and thickness. Appl. Opt. 2022, 61, 7417–7423. [Google Scholar] [CrossRef]
- Greisukh, G.I.; Danilov, V.A.; Ezhov, E.G.; Stepanov, S.A.; Usievich, B.A. Spectral and Angular Dependences of the Efficiency of Relief-Phase Diffractive Lenses with Two- and Three-Layer Microstructures. Opt. Spectrosc. 2015, 118, 964–970. [Google Scholar] [CrossRef]
- Greisukh, G.I.; Ezhov, E.G.; Zakharov, O.A.; Danilov, V.A.; Usievich, B.A. Limiting spectral and angular characteristics of sawtooth dual-relief two-layer diffraction microstructures. Quantum Electron. 2021, 51, 184–188. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 1981, 71, 811–818. [Google Scholar] [CrossRef]
- Lyndin, N.M. Modal and C Methods Grating Design and Analysis Software. Available online: http://www.mcgrating.com (accessed on 28 June 2022).
- Nakai, T. Diffractive Optical Element and Optical System Including the Same. U.S. Patent No. 7301702 B2, 27 November 2007. [Google Scholar]
- Canon Video Square. DO (Diffractive Optics) Lens (CG). Available online: https://global.canon/en/v-square/34.html (accessed on 28 September 2022).
Optical Material | Coefficient of Dispersion for Ranges | |
---|---|---|
3–5 μm | 8–12 μm | |
Germanium | 107.29 | 783.21 |
ZnS | 109.64 | 22.76 |
ZnSe | 177.99 | 57.47 |
GaAs | 146.33 | 106.18 |
IRG22 | 195.34 | 110.77 |
IRG23 | 153.99 | 168.29 |
IRG24 | 198.57 | 175.69 |
IRG25 | 172.63 | 108.82 |
IRG26 | 169.56 | 159.95 |
IRG27 | 158.73 | 47.55 |
GASIR1 | 196.95 | 119.67 |
HWS2 | 170.40 | 100.51 |
Surface Number | Radius, mm | Thickness, mm | Material | Aspheric Polynomial Coefficients at k = 0 | ||
---|---|---|---|---|---|---|
α2∙106, mm−3 | α3∙109, mm−5 | α4∙1012, mm−7 | ||||
1 | 40.468 | 10.024 | IRG22 | −1.627 | 0.082 | 0.283 |
2 | 66.029 | 8.219 | −4.882 | 3.555 | −1.056 | |
3 | ∞ | 3.998 | Germanium | 0 | 0 | 0 |
4 | 190.773 | 6.073 | 0 | 0 | 0 | |
5 | ∞ | 3.997 | ZnS_broad | 0 | 0 | 0 |
6 | 80.038 | 6.806 | 0 | 0 | 0 | |
7 | 30.638 | 19.553 | IRG22 | −14.284 | −3.272 | −4.460 |
8 | 30.333 | 7.058 | −48.452 | 43.871 | −26.140 | |
9 | 19.574 | 7.940 | IRG24 | −5.667 | 27.640 | −75.874 |
10 | 29.946 | 10.000 | 46.775 | 136.739 | −90.995 |
Surface Number | Radius, mm | Thickness, mm | Material | Aspheric Polynomial Coefficients at k = 0 | |||
---|---|---|---|---|---|---|---|
α2∙106, mm −3 | α3∙1010, mm −5 | α4∙1013, mm −7 | α5∙1015, mm −9 | ||||
1 | 140.596 | 10.162 | IRG24 | −3.612 | −10.579 | 1.444 | −0.391 |
2 | 211.565 | 45.082 | −4.389 | −0.470 | 0.543 | −0.087 | |
3 | ∞ | 3.000 | SrF2 | 0 | 0 | 0 | 0 |
4 | ∞ | 0 | 0 | 0 | 0 | 0 | |
5 * | ∞ | 3.950 | Germanium | 0 | 0 | 0 | 0 |
6 | 1040.271 | 0.400 | 0 | 0 | 0 | 0 | |
7 | 47.757 | 17.499 | IRG24 | −3.328 | −8.116 | −0.436 | 0.044 |
8 | 46.682 | 3.570 | −13.901 | 63.838 | −21.654 | 0.236 | |
9 | 30.425 | 20.071 | IRG24 | −4.687 | 37.129 | −38.870 | −1.913 |
10 | 35.627 | 10.319 | 29.243 | 435.105 | 253.940 | −166.101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greisukh, G.I.; Levin, I.A.; Ezhov, E.G. Design of Ultra-High-Aperture Dual-Range Athermal Infrared Objectives. Photonics 2022, 9, 742. https://doi.org/10.3390/photonics9100742
Greisukh GI, Levin IA, Ezhov EG. Design of Ultra-High-Aperture Dual-Range Athermal Infrared Objectives. Photonics. 2022; 9(10):742. https://doi.org/10.3390/photonics9100742
Chicago/Turabian StyleGreisukh, Grigoriy Isaevitch, Il’ya Anatolievich Levin, and Eugeniy Grigorievich Ezhov. 2022. "Design of Ultra-High-Aperture Dual-Range Athermal Infrared Objectives" Photonics 9, no. 10: 742. https://doi.org/10.3390/photonics9100742
APA StyleGreisukh, G. I., Levin, I. A., & Ezhov, E. G. (2022). Design of Ultra-High-Aperture Dual-Range Athermal Infrared Objectives. Photonics, 9(10), 742. https://doi.org/10.3390/photonics9100742