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Abstract: We proposed a new optomechanical system (OMS) based on parallel suspended one-
dimensional optomechanical crystal (1D-OMC) nanobeam cavities for optomechanical synchroniza-
tion. The optomechanical oscillators (OMOs) were spaced apart by an air-slot gap and coupled
through optical radiation fields. The numerical simulation showed that the evolution process of
1D-OMC nanobeam cavities to mechanical synchronization could be divided into three clear stages.
The synchronization of two mechanical breathing modes at 5.8846 GHz was achieved by using
a single laser source. Finally, we investigated the relationship between the threshold power and
detuning of an input laser for self-sustaining and synchronization states. Such chip-based structures
hold great potential for large-scale synchronized oscillator networks.

Keywords: optomechanical synchronization; optomechanical crystal; optomechanical oscillators

1. Introduction

Synchronization has been widely observed in a large variety of fields, which is useful in
applications of time-keeping [1], microwave communication [2], as well as in novel comput-
ing and memory [3,4]. Based on the development of nanofabrication technology, synchro-
nized mechanical oscillators have been experimentally demonstrated in nanomechanical
systems [5] and nanoelectromechanical systems with electronic coupling or physical con-
nections [6,7]. Recently, optomechanical systems have emerged as an ideal platform for
synchronization with high-quality resonance and strong optomechanical coupling [8–12].

The interaction between mechanical oscillators through light in OMS have good
controllability and scalability. An example of such a system includes the synchroniza-
tion of two optically coupled OMOs with small spacing and an extension of up to seven
resonators [13,14]. Two nanomechanical oscillators with mechanical separation were syn-
chronized by a photonic resonator [15] and the long-distance frequency locking between
two OMOs, based on a master–slave configuration, was carried out [16]. The frequency
locking of three long-distance OMOs, with the cascaded configuration, was also experi-
mentally presented [17]. Using a class of air-slot photonic crystal OMOs cavities, two close
mechanical modes could be locked [18]. In a recent experiment, an all-optical synchro-
nization between a microdisk and a microsphere, set5 km apart with a single coherent
laser, was demonstrated [19,20]. However, the OMS based on the above synchronized
schemes lacked chip-scale integration, which restricted the application of reconfigurable
synchronized oscillator networks due to the large-scale size. Moreover, the optical and
mechanical fields were not sufficiently overlapped, resulting in a low optomechanical
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coupling rate. A more suitable chip-scale synchronization platform should be explored
and improved to overcome these limitations. Optomechanical crystals (OMC) [21–23] with
the properties of both photonic and phononic crystals can simultaneously confine optical
and mechanical modes tightly, which could generate strong interactions between optical
and mechanical modes [24–27]. In the previous work, spontaneous synchronization of the
coherent mechanical motion of a pair of one-dimensional silicon optomechanical photonic
crystals through an engineered mechanical link was demonstrated [28].

In this paper, a new OMS consisting of parallel suspended 1D-OMC nanobeam cav-
ities with individual optical and mechanical modes was proposed for optomechanical
synchronization. The 1D-OMC nanobeam cavities were spaced apart by an air-slot gap
and optically coupled by a common optical radiation field. A theoretical model was built
to simulate the optomechanical synchronization. The numerical results showed that the
synchronization of two mechanical breathing modes at 5.8846 GHz was achieved by us-
ing a single laser source. Such a chip-based structure has good prospects in large-scale
synchronized oscillator networks, etc.

2. Theoretical Model

The individual nanobeam cavity used here had two types of periodic structures
that could localize the optical and mechanical modes separately, as shown in Figure 1.
The parallel OMS with the centrosymmetric structure consisted of doubly suspended
nanobeams, which were spatially separated by a narrow slot gap (60–250 nm) and coupled
through the optical evanescent field. The nanobeam cavities’ design follows the high
mechanical frequency recipe [24]. Considering the error in the manufacturing process, the
geometric shape of nanobeam 2 was slightly different to that of nanobeam 1. The thickness
of the silicon nanobeam was 220 nm and the width (w) was 455 nm. For nanobeam 1, the
radii of the holes in photonic crystal and phononic crystal (Rh and Rn) were 136 nm and
90 nm (135.86 nm and 89.9 nm for nanobeam 2), respectively. The periodicities of photonic
crystal and phononic crystal (Dh and Dn) were 487 nm and 360 nm (486.5 nm and 359.6 nm
for the nanobeam 2), respectively. The radii of holes (R1–R4) and the corresponding
periodicities (D1–D4) increased linearly from 99 nm to 127 nm and from 368 nm to 458 nm
(from 98.9 nm to 126.87 nm and from 367.6 nm to 457.5 nm for the nanobeam 2), respectively.
Each cavity of the structure supported a high-quality mechanical breathing mode to provide
strong optomechanical coupling. The interaction was mechanically isolated between two
1D-OMC nanobeam cavities with a single laser driven via an efficient lensed fiber due to the
air-slot gap. In the model, the mechanical coupling through the substrate connection was
insignificant, as both sides had phononic crystal to protect the mechanical mode. Therefore,
the two OMOs were only optically coupled through the optical evanescent field. The
mechanical displacement of one OMO could generate a force to the other OMO through
optical coupling, so the effective mechanical coupling was realized by both optomechanical
interaction and optical coupling.
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The optical modes a1 and a2 of individual 1D-OMC nanobeam cavities are coupled by
the near-field effect, and the coupled-mode equations are given by [8]:
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where γi is the intrinsic loss of each cavity, the subscript i denotes 1 or 2, κ/2 is the optical
coupling rate between two nanobeam cavities, γe is the coupling rate between the cavity
and the lensed fiber, and ain(t) is the input optical amplitude from the lensed fiber. ωi is the
optical resonance angular frequency modulated by the mechanical displacement, which is
expressed as:

ωi = ωi0 + gomxi (3)

where the gom is the optomechanical coupling rate, defined as gom = ∂ω/∂x, and x is the
mechanical mode amplitude.

The mechanical displacements x1 and x2 in each cavity follow the usual optomechani-
cal equations [8]:
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where Ωi, Γi, and mi represent the mechanical resonant frequency, dissipation rate, and
effective motional mass. The frequencies of optical modes ai depend on displacements
xi. When x1 and x2 oscillate with frequency Ω1 and Ω2 near their equilibrium position,
the optical force contains both the DC term and the AC term. The DC term can shift the
equilibrium position of two mechanical modes. The AC term can be decomposed into
harmonic forces with frequency of pΩ1 + qΩ2, where p and q are integers. The higher-order
terms are neglected, and only the force with frequency of Ωi is retained if xi � Ωi/gom.
This kind of force reduces the damping rates Γi and leads to the coupling between x1
and x2. The amplitude x1 will be much bigger than x2, and the frequency Ω1 is the main
component in the optical force when the input power Pin is enough for one of the modes
(for example x1) to achieve self-sustaining optomechanical oscillation. Driven by the force
with the frequency Ω1, x2 can oscillate with the same frequency and a smaller amplitude in
comparison with x1.

3. Results and Discussion

The transverse-electric optical modes of the two 1D-OMC nanobeam cavities were
strongly coupled and split into even and odd modes, as shown in Figure 2a. The even
mode had a peak electric field intensity in the center of the slot gap (see the dotted box),
while there was a noticeably reduced electric field intensity in the center of the slot of the
odd mode. Figure 2b shows the localized mechanical breathing mode and a corresponding
mechanical frequency of 5.8877 GHz. The coupled 1D-OMC nanobeam cavities showed
greater flexibility when designing the more desirable optical and mechanical modes due
to having two independent nanobeam cavities and varied combinations within the archi-
tecture. The impact of the gap length on the optical modes when designing a cavity was
discussed and shown in Figure 2c. The optical resonant wavelengths of the first-order
optical modes based on the cavity configuration could be effectively adjusted by tuning the
gap. It can be seen that the resonant wavelength of the even mode decreased with the gap,
while the odd mode slowly increased with the gap. The variation trend in the wavelength
could be attributed to the moving boundary effect [29]. The dominant electric field Ey was
focused into the gap of the even mode, while the odd mode is the opposite. Similarly, the
shift of the resonant wavelength was large with the same amount of gap variation for the
even mode, in the case of a small gap. This is because the electric field in the middle of the
gap was stronger.
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Figure 2. (a) Normalized electric-field amplitude Ey of even and odd optical modes; (b) Normalized
displacement-field amplitude of the localized mechanical breathing mode in an optomechanical
crystal; (c) Optical resonant wavelengths of odd and even modes versus gap width.

High optical quality factor Q, with a long photon lifetime in the cavity, can enhance
one of the photon–phonon couplings to improve the controllability of mechanical modes.
Figure 3a shows that the optical quality factor Q varied with the gap between two 1D-OMC
nanobeam cavities. It should be noted that the resonant wavelength of the optical mode
around 1590 nm was used as an example. The optical quality factor Q of even and odd
modes were both over 105 at the gap range of 50–250 nm. The Q factor of the odd mode
decreased with the gap, whereas the even mode had an increasing step. This was mainly
due to the rapid change in the optomechanical coupling between two 1D-OMC nanobeam
cavities. The optomechanical coupling rate gom can characterize the interaction strength
between optical and mechanical modes, which was defined as the resonant frequency shift
of the optical mode caused by the mechanical motion in a 1D-OMC. The optomechanical
coupling rate gom calculated by the photoelastic effect and the moving boundary effect
was shown in Figure 3b. It should be noted that the properties of optical and mechanical
modes, including resonance frequency, Q-factor, and optomechanical coupling rate, were
calculated using the finite element method (Figures 2 and 3).
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When the pump laser was switched off, the mechanical displacement of the oscillator
followed the usual motion equation [8]. As shown in Figure 4a, the oscillation of the top
1D-OMC nanobeam cavity experienced a rapid exponential decay during the whole time
period. The mechanical frequency of the mechanical vibration was 5.8877 GHz with a high
mechanical Q-factor of 2.43 × 104, as shown in Figure 4c. It is noted that the energy of the
optical mode was a stable constant when there was no optomechanical coupling between
optical and mechanical modes, as shown in Figure 4b.
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As shown in Figure 5, a 1550 nm tunable laser was used to efficiently excite optical
mode of the 1D-OMC nanobeam cavity and the strong optomechanical coupling between
optical and mechanical modes was achieved. The detuning of the laser was ∆/γ = 0.25,
and the power of the laser was 300 µW. The optical force could amplify the mechanical
motion via the dynamic backaction, since the blue detuning laser was used. Above a certain
laser power threshold, the optomechanical amplification could overcome the mechanical
damping and the OMO evolved into self-sustained oscillation, as shown in Figure 5a.
Figures 4a and 5a show two different oscillating behaviors due to the optomechanical
coupling between the two 1D-OMC nanobeam cavities. One is obviously attenuated, while
the other oscillated steadily. Second, there was a slight difference in the frequency of the
mechanical oscillator due to the optical spring effect. At the same time, the energy of
the optical mode was modulated by the self-sustained oscillation of OMO and shown in
Figure 5b. Figure 5c shows the frequencies of the mechanical mode and the optical force,
which was consistent as well.
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The synchronization of the coupled 1D-OMC nanobeam cavities in the frequency
domain is illustrated in Figure 6. Due to the slight difference in the geometry, the mechani-
cal natural frequencies of the nanobeam cavities were 5.8877 GHz (top) and 5.9503 GHz
(bottom). As shown in Figure 6a, the coupled 1D-OMC nanobeam cavities evolved to me-
chanical synchronization, which could be clarified in three stages. The first step was (i) the
blue-shift state (0–300 µW). When the power of the pump laser increased from 0 to 300 µW,
the mechanical mode appeared in the blue-shift state and gained amplitude due to the
optical spring effect. The second step was (ii) the self-sustaining state (300–400 µW). Above
a certain laser power, the intrinsic mechanical losses were suppressed by optomechanical
amplification. The two OMOs entered self-sustained oscillation with a suddenly increased
oscillation amplitude. The third step was (iii) the synchronized state (>400 µW). The two
OMOs directly converted to synchronized oscillation with the same frequency.
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the input laser during the synchronized process. As shown in Figure 7a,b, the coupled 1D-
OMC nanobeam cavities went through blue-shift and self-sustaining states and then en-
tered the synchronized state at the detuning of 0.01 and 0.75. It could be visually resolved 
that the higher laser power was required at the condition of the large detuning due to the 
lower coupling efficiency between the input laser and the optical mode. Figure 7c shows 
the relationship between the threshold power (synchronization and self-sustaining) and 
the detuning of the input laser. The results were in good agreement with the theoretical 
analysis. It should be noted that the mechanical oscillating and synchronization of two 
1D-OMC nanobeam cavities were achieved by using the NDSolve function in the com-
mercial software Mathematica (Figures 4–7). The simulation method can also be extended 
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Figure 6. Synchronization of the 1D-OMC nanobeam cavities in frequency domain. (a) Color
contour plot of the frequency spectra versus the input laser power; (b) Normalized frequency spectra
evolution of the coupled 1D-OMC nanobeam cavities; (c) The frequency spectra of cavities in the
unsynchronized state; (d) The frequency spectra of cavities in the synchronized state.

Figure 6b shows the evolution of mechanical frequency spectra when the pump laser
power gradually increased. The mechanical mode experienced linewidth narrowing and
oscillation amplitude gain during the three stages. Figure 6c,d show the normalized
mechanical frequency modes of two OMOs with unsynchronized and synchronized states,
where the blue (red) curve was the top (bottom) OMO. It is clear that the frequencies of the
two OMOs were locked to 5.8846 GHz. These results confirmed that the synchronization of
two mechanical breathing modes was achieved by using a single laser source. Finally, we
investigated the relationship between the threshold power and the detuning of the input
laser during the synchronized process. As shown in Figure 7a,b, the coupled 1D-OMC
nanobeam cavities went through blue-shift and self-sustaining states and then entered
the synchronized state at the detuning of 0.01 and 0.75. It could be visually resolved that
the higher laser power was required at the condition of the large detuning due to the
lower coupling efficiency between the input laser and the optical mode. Figure 7c shows
the relationship between the threshold power (synchronization and self-sustaining) and
the detuning of the input laser. The results were in good agreement with the theoretical
analysis. It should be noted that the mechanical oscillating and synchronization of two 1D-
OMC nanobeam cavities were achieved by using the NDSolve function in the commercial
software Mathematica (Figures 4–7). The simulation method can also be extended into
multiple 1D-OMC nanobeam cavities for synchronized calculation.
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4. Conclusions

We demonstrated a new OMS consisting of parallel suspended 1D-OMC nanobeam
cavities with individual optical and mechanical modes for optomechanical synchronization.
Through numerical simulation, the synchronization of two mechanical breathing modes
(GHz) was achieved by using a single laser source. Moreover, the configuration can be
extended into multiple 1D-OMC nanobeam cavities, which indicates such a chip-based
structure holds great potential toward to large-scale synchronized oscillator networks.
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