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Abstract: Nowadays, underwater visible light communication (UVLC) has become one of the key
technologies for high-speed underwater wireless communication. Because of the limited modulation
bandwidth and nonlinearity of the optoelectronic devices in the UVLC system, the combination
of inter-symbol interference and nonlinear impairment will inevitably degrade the transmission
performance. Advanced digital signal processing methods including equalization and decoding
are required. In the past few years, Support vector machine (SVM) has been widely investigated
in quadrature amplitude modulation (QAM) for soft decision in the decoding process. However,
previous works only consider 2-dimensional (2-D) separate symbol, ignoring the correlation between
consecutive symbols. In this paper, we propose to use SVM for soft decision with a 4-dimensional
(4-D) constellation by concatenating two consecutive symbols. To deal with the increasing compu-
tational complexity in the SVM training phase, bit-based binary SVM multi-class strategy and an
edge-detection-based data pre-processing method are employed. In this paper, we demonstrate a
carrierless amplitude and phase (CAP) 16-QAM UVLC system. Experimental results indicate that the
performance is greatly improved when using consecutive-symbol-expanded 4-D constellation with
SVM for soft decision.

Keywords: underwater visible light communication (UVLC); support vector machine (SVM);
inter-symbol interference

1. Introduction

With the development of ocean exploration, the demand for high-speed underwater
wireless data transmission is increasing. Since radio frequency is not suitable for underwa-
ter communication because of the great power attenuation [1], acoustic communication is
widely used, but due to the low transmission speed and large latency, the typical data rate
of acoustic communication is extremely limited. Due to the low attenuation window [2,3]
at blue-green spectrum, underwater visible light communication (UVLC) is supposed
to provide long-distance and high-speed transmission, and abundant investigations on
light-emitting diodes (LEDs) have been reported [1,4–7].

However, inter-symbol interference (ISI) and nonlinear impairment are the two main
problems that restrict the performance of UVLC system. On the one hand, the UVLC
system is bandwidth-limited due to the low modulation bandwidth of LED [5], and the
low-pass filtering effect will induce severe ISI. On the other hand, the UVLC channel is
faced with absorption, scattering, and turbulence [8]. Therefore, large driving power is
required to ensure the desired signal-to-noise ratio (SNR) at the receiver. The nonlinearity
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from optoelectronic devices such as LEDs, photodiodes, and electrical amplifiers (EAs) [6,7]
becomes severe at high amplitude.

In order to eliminate the combination of ISI and nonlinear impairment, digital signal
processing (DSP) is required. Generally, DSP includes equalization and decoding. Constant
modulo algorithm (CMA), least mean square (LMS)-based linear equalizers, and Volterra
series or polynomial-based nonlinear equalizers [9–11] have been widely investigated. As
to decoding, hard decision based on Euclidean distance is most commonly used, whereas
soft decision is supposed to provide better performance. In this context, the latest researches
have employed machine learning algorithms such as support vector machine (SVM) [12–15]
and K-means [16,17] for soft decision. SVM-based soft decision is especially effective
for quadrature amplitude modulation (QAM) when there is strong nonlinearity [14,15],
because the decision boundary can be adjusted according to the distribution characteristics
of constellation points. However, previous works mainly concentrate on 2-dimensional
(2-D) separate symbol [12–15], whereas the correlation between consecutive symbols is
ignored. Inspired by [18,19], the constellation can be expanded to a higher dimensional
constellation by concatenating consecutive symbols. For QAM signal, the original 2-D
constellation is expanded to a 4-D constellation. The nonlinear effect and ISI interact with
each other. It is difficult to remove the correlation between adjacent symbols thoroughly
with a feedforward equalizer, and the high-dimensional clusters will be distorted due to
the combination of residual ISI and nonlinear impairment.

In this paper, we propose to employ SVM to find the optimal decision hyperplane
for the consecutive-symbol-expanded 4-D constellation in an experimental UVLC system.
The proposed scheme is used for soft decision, independent of the post-equalization pro-
cess. As the intensity modulation-direct detection (IM-DD) system requires a real and
positive signal, a pair of carrierless amplitude and phase (CAP) shaping filters are used
for CAP modulation [20,21] so that the complex-valued QAM signal can be converted
into a real-valued signal. Different from existing works that employ SVM for 2-D normal
constellation [12–15], the correlation between consecutive symbols is considered in this
work. However, for the consecutive-symbol-expanded 4-D constellation, the computa-
tional complexity of SVM training phase becomes higher because of the demand for more
classifiers and larger training data size. To deal with the high computational complexity
resulting from the demand for more classifiers, the bit-based binary SVM is applied as the
multi-class SVM strategy, so that the number of required classifiers can remain small [15].
Additionally, since a SVM model only depends on a few support vectors [12], which are
the nearest to the hyperplane, it can be more efficient if the edge points are picked out in
advance because the support vectors are included in the edge points. To deal with the
high computational complexity resulting from the demand for larger training data size, a
simple data pre-processing method is used during the SVM training phase to detect the
edge points of each cluster and abandon the redundant training data. Experimental results
prove the feasibility of the proposed method. When LMS-based linear equalizer is used for
post-equalization, the available baud rate is increased to 412.5 MBaud with the proposed
method under the 7% forward error correction (FEC) threshold.

2. Principle
2.1. Concept of Support Vector Machine

SVM is a powerful supervised machine learning algorithm which can be applied
for amplitude and phase noise characterization [22]. SVM-based soft decision for QAM
and APSK constellation has been proposed in optical communication system, and shown
great improvement especially when there is strong nonlinearity. Because traditional hard
decision is based on the Euclidean distance of separate symbol, it only works well when
the noise distribution follows independent identical distribution for all levels. SVM, on the
other hand, can provide accurate classification boundary according to the characteristics of
noise distribution through training data set. Therefore, SVM-based soft decision is superior
to Euclidean distance-based hard decision.
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In general, the in-phase and quadrature (I/Q) components are concatenated as 2-D fea-
ture vectors. If the training data set is not linearly separable, the kernel function can be used
to map the data from the lower-dimensional feature space to a higher-dimensional feature
space [12], so that the data can be linearly separated. According to the statistical learning
theory, the main function of SVM is to find an optimal hyperplane that ensures the mini-
mum distance from the optimal hyperplane to the nearest points of each group is maximum,
namely the maximizing margin rule [14,23]. Given the function of the hyperplane,

wT · x− b = 0, (1)

where x is the feature vector, and w and b denote the weight and bias. Equation (2) describes
the max-margin problem [23]:

min
{w,b}

1
2‖w‖+ C

n
∑

i=1
ξi

s. t. yi(w
T · xi − b) ≥ 1− ξi

(2)

where 2/‖w‖ is the margin, and yi ∈ {±1} denoting the binary class of xi. The penalty
parameter C and the non-negative slack variable ξi are introduced to provide a soft mar-
gin [23]. C is also related to the box constraint, which controls the penalty imposed on
margin-violating observations [24]. A small box constraint provides a more flexible model
that can prevent overfitting. The points closest to the hyperplane are named support vectors.
In other words, the trained optimal hyperplane only depends on a few support vectors.

As SVM is originally proposed for binary classification, for data set with more than
two classes, additional multi-class SVM strategy is required to decompose the multi-class
problem into several binary classifiers. Common multi-class strategies include one-versus-
one (OVO), one-versus-rest (OVR), and directed acyclic graph (DAG) [13]. The number of
required classifiers for different multi-class strategies is displayed in Table 1. For m-QAM
constellation, bit-based binary classifiers [13–15] can achieve excellent performance with
only log2 m classifiers. The bit-based binary SVM is effective for m-QAM signal with an
even log2m, because the constellation points are evenly distributed in a lattice and the
bit-to-symbol mapping follows gray coding, the adjacent symbols have one single bit
differing. Intuitive bit-based classification hyperplanes can be easily obtained.

Table 1. The number of required classifiers for different multi-class strategy.

Multi-Class Strategy Number of Classifiers

OVO SVM m(m − 1)/2
OVR SVM m

Bit-based binary SVM log2 m

2.2. SVM-Based Soft Decision for 4-D Constellation

Given the transmitting m-QAM sequence s(n) and the receiving sequence r(n), previous
works about SVM-based soft decision only consider the separate symbol (rI(n), rQ(n)) as
the 2-D feature vector (x1, x2), whereas the correlation between consecutive symbols is
ignored. By concatenating the I/Q components of two consecutive symbols, the original 2-D
constellation is expanded to the 4-D constellation. Generally, considering more consecutive
symbols may provide better performance, the additional computational complexity should
also be considered. For the m-order QAM signal, the combinations of consecutive symbols
will increase to mn with n-consecutive-symbol-expanded high-dimensional constellation.
The complexity grows rapidly as the number of consecutive symbols increases. However,
strong interference usually comes from adjacent symbols, and most of the ISI can be
eliminated by the equalization process. Therefore, we mainly consider 2-consecutive-
symbol-expanded 4-D constellation for soft decoding. The 4-D feature vector (x1, x2, x3, x4)
for SVM is (rI(n), rQ(n), rI(n+1), rQ(n+1)). The 2m-bit binary labels of the 4-D feature vectors
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are generated by concatenating the original m-bit binary labels of the two consecutive labels,
so that we can ensure that if the bit-to-symbol mapping of the original 2-D constellation
follows gray coding, the bit-to-symbol mapping of the expanded 4-D constellation also
follows gray coding. Thus, the proposed scheme can be employed for m-order QAM signal
with an even log2m. The combinations of consecutive symbols for 64-QAM are 642, the
required training data size is too large for implementation, while the spectral efficiency
QPSK seems not sufficient for a high-speed UVLC system. As a result, we choose 16-QAM
for validation. As Figure 1a shows, we decompose the 4-D constellation into four 3D
diagrams according to the sQ(n + 1) level. Different colors denote different labels. There are
256 (162) labels, corresponding to the 8-bit binary sequence.
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Figure 1. (a) Constellation diagrams of two consecutive symbols in simulated limited nonlinear
channel. (b) Bit-based binary multi-class SVM strategy.

As for the multi-class SVM strategy, the common OVO and OVR methods are not
suitable for the expanded high-dimensional constellation anymore, because the number
of classes increases from 16 to 256. The numbers of required classifiers for OVO and OVR
become 32,640 and 256, respectively, whereas the number of required classifiers for the bit-
based binary SVM is log2 m. If bit-based binary SVM is employed as the multi-class strategy,
only 8 classifiers are needed, corresponding to the binary label of the 4-D constellation.
Therefore, the complexity can be significantly reduced.

Furthermore, in order to go through enough points in each class, a large amount of
training data is needed. However, as mentioned above, the SVM classification hyperplane
only depends on a few support vectors. There are redundant training data which have no
contribution to the SVM training phase but instead bring high computational complexity.
It can be more efficient if the edge points are picked out in advance. As the support vectors
are the closest to the hyperplane, we can infer that these support vectors are included in the
edge points of each training data cluster. Therefore, we propose to use a data preprocessing
method to reduce the redundant training data. As Figure 2a shows, the 4-D training feature
vectors (x1, x2, x3, x4) can be decomposed to six 2-D constellations. It is noted that the I/Q
scale of the constellation is ranging from [−4, 4]. Then, the constellations are converted
to six binary images through pixel division. The pixel size is denoted as Rs. The number
of pixels is (4/Rs)2. Next, the Sobel operator, which performs a 2-D spatial gradient
measurement, is used for edge detection, so that only the points in the edge pixel are picked
out and merge to the new training feature vectors (x’1, x’2, x’3, x’4). Then, the bit-based
binary SVM classifiers are established based on the pre-processed training data set. At the
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testing phase, each binary SVM classifier gives a predicted answer (0 or 1). Finally, the 8-bit
label can be converted to the decimal label.
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Figure 2. Schematic of SVM-based soft decision. (a) SVM training phase with data preprocessing.
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3. Experimental Setup

Figure 3 shows the experimental setup for the underwater visible light communication
system. The original binary data are generated from an offline MATLAB program. First,
the binary data are mapped into 16-QAM symbols. After a 4-time up-sampling, the in-
phase and quadrature parts of the complex-valued QAM symbols are separated. Then,
a pair of orthogonal shaping filters (roll-off factor = 0.205) are used for CAP modulation.
Afterward, the real-valued signal is loaded into an arbitrary waveform generator (Tektronix
AWG710B, 4.2GSa/s). As the typical −3 dB modulation bandwidth of large-scale LED
is limited to a dozen of MHz or lower, a hardware pre-equalization circuit is used to
increase the power of high-frequency component and decrease the power of low-frequency
component [20]. The hardware pre-equalization circuit is a single constant-resistance
symmetrical bridged-T amplitude equalizer [20] with the resonant frequency at 500 MHz
and low-frequency attenuation 28dB. Afterward, the signal is sent to an amplifier (ZHL-2-8-
S+), followed by a Bias Tee (ZFBT-4R2GW-FT+) which couples the signal and direct current
to drive a blue LED (−3 dB bandwidth is 17 MHz) [7]. After transmission through a 1.2
m water tank, the signal is focused by a lens (Ø75 mm, f = 60 mm) and detected by a PIN
(Hamamatsu, S10784). Tap water is used in this experiment. The system is line-of-sight
point-to-point transmission and turbulence can be ignored, so that the UVLC channel is
approximately deterministic. The PIN outputs two opposite signals which are subtracted
after the amplifier, oscilloscope (DSO9404A, 20GSa/s) and synchronization to suppress the
common mode noise of the system.

Then, the received signal is sent into the offline digital signal processing (DSP) block
for data recovery. First, two matched filters are employed for CAP demodulation. Since
the zero-forcing (ZF) pre-equalization to obtain a flat spectrum is not suitable in UVLC
system [25], the hardware pre-equalization circuit merely provides the rough power allo-
cation and a more balanced SNR distribution. After down-sampling, LMS-based linear
adaptive post-equalization is used to mitigate the ISI. The tap-number of the LMS-based
linear equalizer is 21, and the step-size is optimized at every operating condition in this
experiment. Next, the proposed SVM-based soft decision for 4-D constellation is used to
determine the 4-D decision boundary. We use radial basis function (RBF) as the kernel
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function. The detail implementation about the scheme has been introduced in Section 2.2.
Finally, the original data are recovered after QAM de-mapping.
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Figure 3. Experimental setup of the underwater visible light communication system.

The inset (i) shows the normalized input amplitude–output amplitude (AM–AM) of
the UVLC system at 1.1V and 1.6 Gbps. The red line is the linear reference. The black
points are the average value in a small grid of input amplitude. Obviously, the AM–AM
curve displays nonlinear effect. The inset (ii) is the spectrum of the received signal which
is obtained by fast Fourier transform (FFT). The baud rate of the signal is 400 MBaud.
Although hardware pre-equalization circuit is applied, the high frequency component
still displays great attenuation. In summary, the system is working at nonlinear and
bandwidth-limited condition. It is difficult to remove the correlation between adjacent
symbols thoroughly. Independent of the equalization method, the proposed method is
used for soft decision, which enhances the decoder.

4. Results and Discussion

This section introduces the experimental results and discussion. First, the performance
of SVM-based soft decision for normal 2-D constellation and consecutive-symbol-expanded
4-D constellation at different training data size is given in Figure 4. It should be noted
that the system is working at 1.1 V and 1.6 Gbps, and data preprocessing is not employed.
As Figure 4a shows, the convergence speed for normal constellation with SVM is faster
because the number of classes is smaller, whereas, if there are enough training data, 4-D
constellation with SVM can provide better bit error rate (BER) performance. However, as
Figure 4b shows, the percentage of support vector (SV) in the training data is decreasing
when there is more training data. It indicates that there are considerable redundant training
data. The complexity of the training phase scales between O(dNt2) and O(dNt3) for SVM
with d-dimensional feature vectors and Nt training points. Therefore, data preprocessing
is necessary for reducing computational complexity. To make a trade-off between BER
performance and SVM training complexity, the training data size is set as 26,214. The trained
SVM models can be applied for a period of time, because the system is approximately
deterministic at a fixed operating condition. In a practical system, the training process can
be operated offline for some typical operating conditions.
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Figure 4. (a) BER versus training data size. (b) The percentage of SV size versus training data size for
4-D constellation with SVM.

To search for the optimal parameters for the data preprocessing method, we measure
the BER performance and the compression ratio (Nedge/N) with different pixel size Rs
and Threshold of the Sobel operator. First, the experimental results are measured at a
data rate of 1.6 Gbps and Vpp of 1.1 V, as shown in Figure 5a,b. Figure 5a shows the BER
performance under different parameter conditions. The area with larger value indicates a
better BER performance. However, not all the Threshold and Rs pairs with large-log (BER)
are appropriate to simplify the training data set in the edge detection process. Figure 5b
shows the compression ratio of the training data after pre-processing. The area with a lower
value indicates that the Sobel edge detector worked and the training set becomes simplified,
to a certain extent. To make a tradeoff between the BER performance and compression ratio,
we prefer the parameters that correspond to lower BER and lower Nedge/N. As a result, at
the data rate of 1.6 Gbps, the optimal Threshold ranges from 0.1 to 0.23, while the optimal
Rs ranges from 0.057 to 0.08. To ensure the generalization of the optimal parameters, the
BER performance is also measured at the operating condition of 1.1 V, 1.4 Gbps. The results
are shown in Figure 5c,d. Similarly, at the data rate of 1.4 Gbps, the optimal threshold
ranges from 0.1 to 0.23, meanwhile the optimal Rs ranges from 0.057 to 0.08. The optimal
ranges are coincident with that at the data rate of 1.6 Gbps.
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Figure 5. Parameter selection based on grid search. (a) BER performance, and (b) at 1.6 Gbps. (c) BER
performance, and (d) at 1.4 Gbps.
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More specifically, as Figure 6a shows, we illustrate the BER performance versus Rs
in the case of two fixed Threshold values under the condition of a data rate of 1.6 Gbps
and Vpp of 1.1 V. When Threshold equals 0.2, the BER keeps a low value. The constellation
diagrams after edge detecting under certain values of Rs are inserted as subfigures. We
can observe that the constellation F obtains a clear profile, which effectively reduces the
training data size. By contrast, constellation B shows that the edge detection algorithm
has not obtained a good result and that there are many redundant data even though BER
performance is barely satisfactory. Similarly, as Figure 6b shows, we also illustrate the BER
performance versus Threshold in the case of two fixed Rs values. We can observe that
the constellation A is well edge detected, while the constellation B has a lot of redundant
data. It can be seen from the aforementioned experimental results that the edge detection
algorithm can achieve comparatively optimal performance when the threshold is 0.072 and
Rs is 0.2, the parameters adopted in rear experiments.
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Figure 6. (a) BER versus the pixel-division size Rs and (b) BER versus the Sobel parameter Threshold
at 1.6 Gbps.

Next, we investigate the BER versus box constraint, which is a key parameter of SVM,
corresponding to C in Equation (2). The BER performance is measured by changing box
constraint from 0.1 to 100 at 1.4 Gbps and 1.6 Gbps. As shown in Figure 7, when the box
constraint increases, the BER firstly decreases. When the box constraint reaches around 1,
the BER drops to a minimum value, and the BER gradually increases as the box constraint
increases. The constellation diagrams at 1.4 Gbps and 1.6 Gbps are inserted as inset (i) and
inset (ii), respectively. The trend of the BER curve at 1.4 Gbps is slowly varying because
the ISI is not severe at a low data rate, and the boundary of constellation clusters is clear.
However, when the data rate exceeds 1.6 Gbps, the constellation is distorted more severely.
BER increases significantly as box constraint becomes larger, indicating that it is more at
risk of overfitting. When the box constraint is 1, the SVM-based soft decision performs
well at the two data rates. We can infer that constellation with less distortion has higher
tolerance for the variation of box constraint. The parameter can be obtained at the condition
with a high data rate and applied to other operation condition with lower data rate.
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Figure 7. BER versus box constraint at 1.4 Gbps and 1.6 Gbps. (i) and (ii) are constellations at 1.4
Gbps and 1.6 Gbps respectively.

Figure 8 shows the projection of 4-D constellation points on a 2-D plane. The decision
boundary obtained by SVM is also illustrated. Since the four axes are combined in pairs, six
different projection planes can be illustrated (Figure 8a–f). As can be seen from Figure 8a,f,
the constellation points spread out into a nearly circular shape because the axes of the
projection plane are from the same time while the constellation clusters in Figure 8b–e
spread out into an oval shape because the axes are from different time. The correlation
between the two consecutive symbols will crosstalk each other and lead to the special
ellipse constellation. Additionally, the outer constellation points spread more than the
inner circle, which indicates the nonlinear effect in the UVLC system. The SVM-based
decision boundary for elliptical constellation clusters is adjusted adaptively according to
the distribution characteristics of constellation points. Therefore, the proposed method can
deal with the distortion resulting from residual nonlinearity and ISI after post-equalization.
The adaptive decision boundary is supposed to outperform the simple hard decision.
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Figure 8. (a–f) are the projection of 4-D constellation points on a 2-D plane and the SVM-based soft
decision boundary.
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Figure 9 shows the BER performance on different baud rare under conditions without
SVM, normal 2-D constellation with SVM (abbreviated as 2-D SVM in Figure 9), and 4-D
constellation with SVM (abbreviated as 4-D SVM in Figure 9) after post-equalization. It
should be noted that the SVM-based soft decision is applied in the decoding process,
independent of the post-equalization. The solid lines are results employing LMS-based
linear equalization. Obviously, 4-D constellation with SVM performs best, followed by
normal 2-D constellation with SVM and without SVM. When the baud rate is low, the
nonlinear effect is the dominant impairment, normal 2-D constellation with SVM can
provide a significant performance gain. However, as the baud rate increases, ISI becomes
the dominant impairment, 4-D constellation with SVM displays a larger performance gain.
At the operating condition of 412.5 MBaud, the BER of LMS without SVM and LMS with
2-D SVM has exceeded the 7% FEC threshold (3.8× 103), while the BER of LMS with 4-D
SVM still satisfies the threshold. The available baud rate is increased by 12.5 MBaud,
corresponding to the data rate improvement of 50 Mbps.
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For fair comparison, we also add the results employing artificial neural network (ANN)
for nonlinear equalization as the dashed lines in Figure 9. The ANN is a feedforward
complex-valued network with a dual branch structure [6]. The input layer has 21 nodes,
sharing the linear and nonlinear branches. The nonlinear branch contains one hidden layer
with 10 nodes. The activation function is complex-ReLU. The Adam optimizer is used
for training. We can observe that the ANN-based nonlinear equalization performs better
than the LMS-based linear equalization. With the joint effort of 4-D SVM soft decision,
the BER can keep under the threshold at 425 MBaud. It should be noted that the training
size is 26,214, whereas after data preprocessing the training size is decreased by 56%. As
the complexity of the training phase scales between O(dNt

2) and O(dNt
3) for SVM with

d-dimensional feature vectors and Nt training points, the required computational resource
has been significantly reduced.

5. Conclusions

In this paper, we propose to use SVM-based soft decision for consecutive-symbol-
expanded 4-D constellation in bandwidth-limited nonlinear UVLC system. To reduce the
computational complexity, bit-based binary SVM multi-class strategy and data prepro-
cessing method are employed. Key parameters of the proposed method are discussed.
Experimental results prove that the performance can be significantly improved. When
LMS-based linear equalizer is used for post-equalization, the available baud rate is in-
creased from 400 MBaud to 412.5 MBaud, corresponding to the data rate improvement of
50 Mbps. With the joint effort of nonlinear equalizer and the proposed scheme, the BER
can still satisfy the 7% FEC threshold at 425 MBaud.
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