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Abstract: Transverse spin angular momentum (SAM) of photon, also known as ‘photonic wheel’,
has attracted much attention, owing to its extraordinary properties and broad application prospect.
Thus, it is essential to flexibly manipulate the transverse SAM in order to satisfy different needs.
In this article, we design and generate a new kind of symmetrically modulated hybridly polarized
vector optical field (SM-HP-VOF), and pure transverse SAM can be achieved based on the tightly
focused SM-HP-VOF. Through adjusting the parameters of the SM-HP-VOF, the shape, intensity,
and symmetry of the transverse SAM can be modulated. Moreover, by adding a segmented vortex
phase distribution to the SM-HP-VOF, the transverse SAM becomes more concentrated and stronger,
indicating that the orbital angular momentum can be a catalyst in modulating transverse SAM. Such
results can provide a new avenue in studying and modulating transverse SAM, which would have
potential applications in various areas including chip optical circuitry, optical quantum computing,
and optical trapping and manipulation.

Keywords: transverse spin angular momentum; vector optical field; symmetry; orbital angular
momentum

1. Introduction

In recent years, manipulation of polarization has become an appealing and promis-
ing topic of physical optics, due to its important role in engineering optical fields and
light–matter interaction. As a representative example of manipulating polarization, vector
optical field (VOF) with space-variant polarization distribution on the wave front has a
growing interest [1,2], owing to the novel optical effects and wide applications such as
optical trapping [3,4], focal engineering [5–8], quantum entanglement [9,10], optical mi-
croscopy [11,12], and optical communications [13–15]. Among various VOFs, the hybridly
polarized vector optical field (HP-VOF), which comprises the linear, elliptic, and circular
polarizations in the wavefront of the field simultaneously, attracts great attention [16–22].

As is well known, light can carry both spin angular momentum (SAM) and orbital
angular momentum (OAM), which are related to the polarization and phase of light,
respectively. The SAM is associated with the circular polarizations with two possible
quantized values of ±
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, which can make the particle spin around its own axis. The
conventional SAM is called the longitudinal SAM, which is parallel or antiparallel to the
propagation direction of the optical field. The longitudinal SAM corresponds to the two-
dimensional polarization, which will be limited when studying the electric field with three
spatial components in special conditions. Thus, in addition to the longitudinal SAM, there
must be a kind of transverse SAM. The transverse SAM, whose spin vector is perpendicular
to the propagating direction, has attracted extensive attention [23–39]. As the VOF and
transverse SAM density are both related to the polarization of light, it is promising to use
the VOF in manipulating SAM [25,27–30,32,33,36,37,39–45].
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In this paper, we propose a new kind of symmetrically modulated hybridly polarized
vector optical field (SM-HP-VOF), and the pure longitudinal SAM in the input plane
can transform into pure transverse SAM in the focal plane. With the flexibly modulated
SM-HP-VOF, the feature of the transverse SAM can be manipulated. We further add a
segmented vortex phase distribution to the wave front of the SM-HP-VOF, in order to
concentrate and enhance the transverse SAM. This means the OAM of light can also affect
the distribution of the transverse SAM. Such results can be exploited in various areas
needing flexibly modulated SAM.

2. Design and Generation of SM-HP-VOF

To design the SM-HP-VOF, we divided the circular wave front of the optical field into
2N congruent sectors, and the range of the n-th sector is:

ϕn −1 ≤ ϕ < ϕn, n = 1, 2, . . . , 2N, (1)

where ϕ is the azimuthal coordinate on the wave front, and ϕn= nπ/N is the azimuthal
coordinate of the boundary between the n-th and (n + 1)-th sector.

The first sector is filled with the traditional cylindrical HP-VOF, which is based on the
expression of the polarization state on Poincaré sphere [16,17]. The expression of optical
field in the first sector is:

E1(ϕ) = sin
(

mϕ +
π

4

)
e−iφ1 êr + cos

(
mϕ +

π

4

)
e−iφ1 êl ; 0 ≤ ϕ < ϕ1 (2)

where m is the topological charge of the cylindrical HP-VOF in the first sector, and
êr =

(
êx + iêy

)
/
√

2 and êl =
(
êx − iêy

)
/
√

2 are right-handed and left-handed circu-
lar polarization basis vectors. The orientation of the polarization on the wave front is
φ1 with respect to the x axis, and 2φ1 corresponds to the longitude coordinate on the
Poincaré sphere representing the polarization. The ellipticity of polarization is controlled
by α1 = mϕ, and 2α1 corresponds to the latitude coordinate on the Poincaré sphere. The
ellipticity of polarization is tan α1.

For the optical field above the x axis when 1 ≤ n ≤ N, we designed the polarization
state of the optical field based on the symmetry principle, and the optical field in n-th sector
is symmetric with the (n − 1)-th optical field. Here, we continued to use the longitude and
latitude coordinates on the Poincaré sphere to represent the polarization state of the optical
field. The polarization state of the optical field in the n-th sector can be represented by the
coordinates on the Poincaré sphere (2φn, 2αn). The recursive formula of φn and αn for the
polarization state of the optical field in the n-th sector is:

φn= 2ϕn−1 − φn−1, (3)

αn= mod(n− 1, 2)m
2π
N
− αn−1, (4)

where n = 2, 3, 4 . . . N. mod(a, b) is the remainder of a/b. In this article, we take φ1= 0
and α1= mϕ corresponding to the cylindrical HP-VOF in the first sector. The orientation
of polarization φn is based on φn − 1, and the orientation is symmetric about the axis of
ϕ = ϕn −1. The ellipticity of polarization is determined by αn. When n = 1, α1 increases from
0 to mϕ1 as ϕ increases. When n is odd, αn= m[ϕ− (n− 1)π/N], ϕn − 1 ≤ ϕ < ϕn. The
range of [ϕ− (n− 1)π/N] is [0, π/N), which means that the change of αn is completely
equivalent to the change of α1. In addition, when n is even, αn= m[nπ/N − ϕ], ϕn − 1 ≤
ϕ < ϕn. The range of [nπ/N − ϕ] is [π/N, 0), which means that the change of αn is

completely opposite to the change of α1. This can guarantee the symmetry of the ellipticity
of polarization. Based on the Poincaré sphere, the expression for the optical field in the n-th
sector is:
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En(ϕ) = sin
(

αn +
π

4

)
e−iφn êr + cos

(
αn +

π

4

)
eiφn êl ; ϕn−1 ≤ ϕ < ϕn, n = 1, 2, 3, . . . , N. (5)

For the optical field below the x axis when N + 1 ≤ n ≤ 2N, the optical fields in the
n-th and (n − N)-th sectors are the complex conjugate of each other. In this way, the optical
fields at the central symmetric positions have conjugate symmetry. Then the expression of
the optical field in the n-th sector is:

En(ϕ) =
[
sin
(

αn +
π

4

)
e−iφn êr + cos

(
αn +

π

4

)
eiφn êl

]∗
, ϕn−1 ≤ ϕ < ϕn, n = N + 1, N + 2 . . . 2N. (6)

Therefore, the SM-HP-VOF can be expressed as:

E(ϕ) =

2N

∑
n=1

En(ϕ). (7)

In order to generate the SM-HP-VOF, we performed the experiment using a 4f sys-
tem and spatial light modulator (SLM), which is a universal method for generating
VOFs [4,16,46]. The input horizontal polarized beam is incident on the SLM and is di-
vided to ±1st orders. The two orders are allowed to pass through a spatial filter and then
are converted into two orthogonally ±45◦ linearly polarized fields by a pair of half-wave
plates. The two orthogonally linearly polarized parts are recombined by the Ronchi phase
grating placed in the output plane of the 4f system. We should point out that the innovation
of this paper is that we achieved the above designed SM-HP-VOF, and this experimental
method is a common method to generate VOFs. In Figure 1, the first row shows the simu-
lated polarization state and the normalized Stokes parameters of the SM-HP-VOF when
(N, m) = (2, 1) in Equations (2)–(7), and the second row presents the corresponding exper-
imental results. In the experimentally measured total intensity pattern, there occur two
black singular lines, which originate from the π phase difference beside the lines. It can be
seen that the polarizations in the sector when n = 1 and 2 are right-handed elliptic (circular)
polarizations, while the polarizations in the sector when n = 3 and 4 are left-handed elliptic
(circular) polarizations. Clearly, the experimental results are in good agreement with the
simulated ones, but it was still found that the measured Stokes parameter S2 was slightly
different from the theoretical result, and the error was caused by the quarter-wave retarder
plate and polarizer in the experiment.

Figure 2 shows the simulated and generated SM-HP-VOFs when (N, m) = (2, 2) and
(4, 2), respectively. The first and third rows show the simulated polarization states and
normalized Stokes parameters of the SM-HP-VOF, and the second and fourth rows present
the experimental results. Singular lines can also be found in the experimentally measured
total intensity patterns, and the black singular lines on x and y axes when (N, m) = (2, 2)
also originated from the phase difference of π. For the SM-HP-VOF when (N, m) = (4, 2),
there are two kinds of singular lines. The black singular line on the x axis is also due to
the phase difference of π, leading to the complete extinction of light on the singular line.
Meanwhile, the other two singular lines exhibit partial extinction. This phenomenon is
because the polarizations beside the singular line are vertically and horizontally polarized,
respectively. When (N, m) = (2, 2), the polarization changing speed is two times of the
case when (N, m) = (2, 1) in Figure 1. This is easy to understand as the topological charge
m can control the changing period of the polarization in the cylindrical HP-VOF. When
(N, m) = (4, 2), there are 8 sectors to modulate the polarization state of the SM-HP-VOF, and
the polarizations above x axis are right-handed elliptic (circular) polarizations, while the
polarizations below x axis are left-handed elliptic (circular) polarizations. The experimental
results are in good agreement with the simulated ones.
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Figure 1. Simulated and measured SM-HP-VOF when (N, m) = (2, 1). The first and second rows show
the simulated and experimental results of the SM-HP-VOF. The first column shows the polarization
state and the experimental total intensity pattern. The red and green polarizations represent right-
and left-handed elliptic (circular) polarizations, respectively. Stokes parameters S1, S2, and S3 are
given in the second to fourth columns, respectively.
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3. The Manipulation of the Transverse SAM of the Tightly Focused SM-HP-VOF 

Figure 2. Simulated and measured SM-HP-VOF. The first and second rows correspond to the case
when (N, m) = (2, 2), and the third and fourth rows correspond to the case when (N, m) = (4, 2). The
first and third rows show the simulated results of the SM-HP-VOF, and the second and fourth rows
show the corresponding experimental results. The first column shows the polarization states and the
experimental total intensity patterns. The blue, red, and green polarizations represent linear, right-
and left-handed elliptic (circular) polarizations, respectively. Stokes parameters S1, S2, and S3 are
given in the second to fourth columns, respectively.
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3. The Manipulation of the Transverse SAM of the Tightly Focused SM-HP-VOF

As we have introduced, SAM density is an essential property of light, and the achieve-
ment of the transverse SAM density is important due to its various applications [23–39].
When calculating the three-dimensional SAM density, the transverse SAM density St is the
superposition of x- and y-components of the SAM density as St =

√
Sx + Sy. To achieve

transverse SAM density, it is natural to think of the tightly focused field, which may have
a nonzero longitudinal component. Now we will study the tightly focused SM-HP-VOF
based on a lens with numerical aperture NA = 0.95, and further discuss the transverse SAM
density of SM-HP-VOF. According to the Richards–Wolf vectorial diffraction theory [47,48]
and formula of the time-averaged SAM density [24,31,40,49–51], we can calculate the tightly
focused field and the SAM density distribution in the focal plane.

Figure 3 shows the SAM density of the tightly focused HP-VOF and SM-HP-VOF.
The first column shows the polarization states of the VOFs in the input plane. We can
see that the most prominent difference between the SM-HP-VOF and the conventional
cylindrical HP-VOF is that the polarizations of the SM-HP-VOF at the central symmetric
positions are with opposite SAM, while the SAM is the same for the case of the HP-VOF.
This difference is due to the fact that the electric fields at the central symmetric positions
are the complex conjugate of each other for the SM-HP-VOF, as shown in Equation (6). For
the cylindrical HP-VOF when m = 1, there is one focal spot in the focal plane, and both
transverse and longitudinal SAM density appear in the focal plane. For the SM-HP-VOF,
pure transverse SAM density can be achieved in the focal plane, and there is no longitudinal
SAM density. According to [33], when the electric fields at the central symmetric positions
are the complex conjugate of each other in the input plane, the x-component of the tightly
focused field is in phase with the y-component, and the z-component and x(y)-component
of the tightly focused field are always ±π/2 out of phase. Obviously, the electric field of
SM-HP-VOF at the central symmetric positions are the complex conjugate of each other,
leading to the pure transverse SAM in the focal plane. Meanwhile, the maximum values of
the transverse SAM density are also larger than the case of the cylindrical HP-VOF. This
proves the advantage of the SM-HP-VOF in achieving pure transverse SAM density.

To further discuss the influence of N on manipulating the transverse SAM density,
the total intensity and transverse SAM density of the tightly focused SM-HP-VOF when
(N, m) = (2, 1), (4, 1), (2, 2) and (4, 2) are shown in Figure 4. The total intensity of the
tightly focused SM-HP-VOF is shown in the first column, and the transverse component
St, x-component Sx, and y-component Sy of the transverse SAM density are shown in the
second to fourth columns. It should be pointed out that the longitudinal SAM density is
zero for the tightly focused SM-HP-VOF, which is not shown in Figure 4. From Figure 4 we
can see that when N = 4, the maximum value of the transverse SAM density is larger than
that of the case when N = 2. Meanwhile, the transverse SAM density is more concentrated
when N = 4, as only two peak spots appear for the transverse SAM density. This illustrates
that the larger parameter N can concentrate the transverse SAM density and improve the
maximum value of it. In addition, the maximum value of Sx is always larger than that of Sy.

In addition to the parameter N, the topological charge m is also an important parameter
to modulate the focal intensity and transverse SAM density of the tightly focused SM-
HP-VOF. As shown in Figures 4 and 5, the maximum value of the focal intensity is larger
when m = ±2 compared with the case when m = ±1, and the main spot shrinks when
m = ±2 as well. This means that for the tightly focused SM-HP-VOF, the larger |m| can
make the focal spot stronger and more concentrated. It is worth noting that by comparing
Figures 4 and 5, the distributions of focal intensity pattern and the transverse SAM density
St are symmetric about the y axis when N is the same and m is opposite to each other. By
comparing Sx and Sy in Figures 4 and 5, it can be found that when N is the same and m is
opposite, the distribution of Sx is symmetric to the y axis, while the distribution of Sy is also
symmetric to the y axis but with the opposite values. From Figures 4 and 5 we know that
the parameters N and m of the SM-HP-VOF can be used in modulating the distribution and
symmetry of the intensity and transverse SAM density of the tightly focused SM-HP-VOF.
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Figure 3. The polarization states of the HP-VOF and the SM-HP-VOF in the input plane are shown in
the first column, and the total intensity, transverse SAM density St, and longitudinal SAM density
Sz in the focal plane are shown in the second to fourth columns. The first row shows the cylindrical
HP-VOF when m = 1, and the second and third rows show the SM-HP-VOF when (N, m) = (2, 1) and
(4, 1), respectively. The blue, red and green polarizations in the first column represent linear, right-
and left-handed elliptic (circular) polarizations, respectively. The arrows in the third column indicate
the direction of the transverse SAM density. The numerical aperture of the focal lens is NA = 0.95,
and any picture in the focal plane has a size of 4λ × 4λ, with λ being the wavelength.
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Figure 4. The total intensity and transverse SAM density of the tightly focused SM-HP-VOF when
(N, m) = (2, 1), (4, 1), (2, 2) and (4, 2) in the four rows, respectively. The first column shows the
total intensity of the tightly focused SM-HP-VOF. For the transverse SAM density, the transverse
component St, x-component Sx, and y-component Sy are shown in the second to fourth columns,
respectively. The numerical aperture of the focal lens is NA = 0.95, and any picture in the focal plane
has a size of 4λ × 4λ, with λ being the wavelength.
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Figure 5. The total intensity and transverse SAM density of the tightly focused SM-HP-VOF when
(N, m) = (2, −1), (4, −1), (2, −2) and (4, −2) in the four rows, respectively. The first column shows
the total intensity of the tightly focused SM-HP-VOF. For the transverse SAM density, the transverse
component St, x-component Sx, and y-component Sy are shown in the second to fourth columns,
respectively. The numerical aperture of the focal lens is NA = 0.95, and any picture in the focal plane
has a size of 4λ × 4λ, with λ being the wavelength.

To further enrich the manipulating method of the transverse SAM density with the
tightly focused SM-HP-VOF, we added a segmented vortex phase distribution pn in each
sector to the SM-HP-VOF, to help us study the influence of the OAM on the transverse
SAM density. As we introduced above, the OAM is related to the space-variant phase
distribution, which has been applied in various regions [52–61]. A vortex field with a helical
phase of exp(− ilϕ) can carry an optical OAM of l per photon, where l is the topological
charge. The SM-HP-VOF with the phase modulation can be expressed as:

E(ϕ) =

N

∑
n=1

En(ϕ)eipn +

2N

∑
n=N+1

En(ϕ)e−ipn (8)

when 1 ≤ n ≤ N and n is odd, pn= lϕ − (n− 1)lπ/N, (n− 1)π/N ≤ ϕ < nπ/N.
Hence, pn is limited within a range of [0, lπ/N), which means that the variation trend of
pn is exactly equivalent to the case of p1. When 1 ≤ n ≤ N and n is even, pn= lnπ/N −
lϕ, (n− 1)π/N ≤ ϕ < nπ/N. Hence, pn is limited within a range of [lπ/N, 0), which
means that the variation trend of pn is exactly contrary to the case of p1. For the case of
the optical field below x axis when N + 1 ≤ n ≤ 2N, the attached phase is the complex
conjugate of the phase at the central symmetric position. In this way, the segmented vortex
phase distribution also is in accord with the symmetry requirement we make.

Figure 6 shows the total intensity and transverse SAM density of the tightly focused
SM-HP-VOF with segmented vortex phase modulation when (N, m) = (4, 1). The topological
charges of the segmented vortex phases are l =−2,−1, 0, 1 and 2 in the first to fifth columns
in Figure 6, respectively. When there is no vortex phase distribution and l = 0, there are
two peak spots in the transverse SAM density pattern. When |l| increases to 2, the two
peak spots gradually change to one, and the maximum value increases as well. This means
the segmented vortex phase or the segmented OAM distribution can help the SM-HP-VOF
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to converge and enhance the transverse SAM density. For opposite topological charges l,
the distribution of the focal intensity and the transverse SAM density are both symmetric
about the x axis, as shown in the first two rows in Figure 6. However, for the direction of
the transverse SAM density St, it is not simply symmetric about x axis for opposite l. The
directions of the transverse SAM density when l = 2 and −2 are both clockwise. This is
because the upper peak spot maintains when l = −2, while the lower peak spot maintains
when l = 2.
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Figure 6. The total intensity and transverse SAM density of the tightly focused SM-HP-VOF with
segmented vortex phase modulation when (N, m) = (4, 1). The topological charges of the vortex
phases are l = −2, −1, 0, 1 and 2 in five columns, respectively. The focal intensity, transverse SAM
density St and the direction of St are given in the three rows, respectively. The numerical aperture
of the focal lens is NA = 0.95, and any picture in the first two rows has a size of 4λ × 4λ, and any
picture in the third row has a size of 2.5λ × 2.5λ.

4. Conclusions

In conclusion, we propose a new kind of SM-HP-VOF, which is designed by dividing
the wave front of the optical field into sectors and filling the symmetric polarizations based
on the conventional cylindrical HP-VOF. We realized the SM-HP-VOF in an experiment,
and the wave fronts were divided into four and eight sectors, respectively. Based on the
SM-HP-VOF, pure transverse SAM can be achieved in the focal plane by a focal lens with
NA = 0.95. By changing the parameters of the SM-HP-VOF, the shape, intensity, and
symmetry of the transverse SAM can be manipulated. When a segmented vortex phase
is further added to the wave front of the SM-HP-VOF, the transverse SAM becomes more
concentrated and stronger. In this way, the OAM can be regarded as a catalyst of manip-
ulating transverse SAM. The newly proposed SM-HP-VOF and the flexibly manipulated
transverse SAM can provide new thoughts in studying VOF as well as the transverse SAM,
which can be applied in various areas including chip optical circuitry, optical quantum
computing, and optical trapping and manipulation.
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