Silver Nanoplate Composites as Nonlinear Saturable Absorbers for a Q-Switched Laser
Abstract
:1. Introduction
2. Fabrication and Characterization
3. Schematic of the Passively Q-Switched Fiber Laser
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riemensberger, J.; Lukashchuk, A.; Karpov, M.; Weng, W.; Lucas, E.; Liu, J.; Kippenberg, T.J. Massively parallel coherent laser ranging using a soliton microcomb. Nature 2020, 581, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Di Teodoro, F.; Belden, P.; Ionov, P.; Werner, N.; Fathi, G. Development of pulsed fiber lasers for long-range remote sensing. Opt. Eng. 2014, 53, 036105. [Google Scholar] [CrossRef]
- Sorokin, E.; Sorokina, I.T.; Mandon, J.; Guelachvili, G.; Picqué, N. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 µm region with a Cr2+: ZnSe femtosecond laser. Opt. Express 2007, 15, 16540–16545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, T.J.; Beard, P.C. Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging. Opt. Lett. 2006, 31, 3462–3464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hargrove, L.E.; Fork, R.L.; Pollack, M.A. Locking of He–Ne laser modes induced by synchronous intracavity modulation. Appl. Phys. Lett. 1964, 5, 4–5. [Google Scholar] [CrossRef]
- Mocker, H.W.; Collins, R.J. Mode competition and self-locking effects in a Q-switched ruby laser. Appl. Phys. Lett. 1965, 7, 270–273. [Google Scholar] [CrossRef]
- Karlitschek, P.; Hillrichs, G. Active and passive Q-switching of a diode pumped Nd:KGW-laser. Appl. Phys. B 1996, 64, 21–24. [Google Scholar] [CrossRef]
- Sorokina, I.T.; Sorokin, E.; Di Lieto, A.; Tonelli, M.; Page, R.H.; Schaffers, K.I. Active and passive mode-locking of the Cr2+: ZnSe laser. In Proceedings of the Advanced Solid State Lasers, Seattle, WA, USA, 28–31 January 2001. [Google Scholar]
- Matsas, V.J.; Newson, T.P.; Richardson, D.J.; Payne, D.N. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation. Electron. Lett. 1992, 28, 1391–1393. [Google Scholar] [CrossRef] [Green Version]
- Aguergaray, C.; Broderick, N.G.R.; Erkintalo, M.; Chen, J.S.Y.; Kruglov, V. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror. Opt. Express 2012, 20, 10545–10551. [Google Scholar] [CrossRef]
- Barnett, B.C.; Rahman, L.; Islam, M.N.; Chen, Y.C.; Bhattacharya, P.; Riha, W.; Reddy, K.V.; Howe, A.T.; Stair, K.A.; Iwamura, H.; et al. High-power erbium-doped fiber laser mode locked by a semiconductor saturable absorber. Opt. Lett. 1995, 20, 471–473. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z. Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics. Opt. Mater. Express 2013, 4, 63–78. [Google Scholar] [CrossRef]
- Yao, B.C.; Rao, Y.J.; Wang, Z.N.; Wu, Y.; Zhou, J.H.; Wu, H.; Fan, M.Q.; Cao, X.L.; Zhang, W.L.; Chen, Y.F.; et al. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers. Sci. Rep. 2015, 5, 18526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Guo, Q.; Qiu, J. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017, 29, 1605886. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Kong, T.; Ma, W.; Wang, H.; Zhang, H. 2D crystal-based fibers: Status and challenges. Small 2019, 15, 1902691. [Google Scholar] [CrossRef]
- Guo, B.; Xiao, Q.; Wang, S.h.; Zhang, H. 2D layered materials: Synthesis, nonlinear optical properties, and device applications. Laser Photon. Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Ma, C.; Wang, C.; Gao, B.; Adams, J.; Wu, G.; Zhang, H. Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Appl. Phys. Rev. 2019, 6, 041304. [Google Scholar] [CrossRef]
- Shang, C.; Zhang, Y.; Qin, H.; He, B.; Zhang, C.; Sun, J.; Li, J.; Ma, J.; Ji, X.; Xu, L.; et al. Review on wavelength-tunable pulsed fiber lasers based on 2D materials. Opt. Laser Technol. 2020, 131, 106375. [Google Scholar] [CrossRef]
- Fu, B.; Sun, J.; Wang, G.; Shang, C.; Ma, Y.; Ma, J.; Xu, L.; Scardaci, V. Solution-processed two-dimensional materials for ultrafast fiber lasers. Nanophotonics 2020, 9, 2169–2189. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Wang, Z.; Ouyang, H.; Lyu, W.; Sun, J.; Cheng, Y.; Fu, B. Recent progress of two-dimensional materials for ultrafast photonics. Nanomaterials 2021, 11, 1778. [Google Scholar] [CrossRef]
- Zhao, X.; Jin, H.; Liu, J.; Chao, J.; Liu, T.; Zhang, H.; Wang, G.; Lyu, W.; Wageh, S.; Al-Hartomy, O.A.; et al. Integration and applications of nanomaterials for ultrafast photonics. Laser Photonics Rev. 2022, 2200386. [Google Scholar] [CrossRef]
- Set, S.Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M.; Sakakibara, Y.; Rozhin, A.; Tokumoto, M.; Kataura, H.; Achiba, Y.; Kikuchi, K. Mode-locked fiber lasers based on a saturable absorber incorporating carbon. In Proceedings of the Optical Fiber Communication Conference, Atlanta, GA, USA, 28 March 2003. [Google Scholar]
- Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z.X.; Loh, K.P.; Tang, D.Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083. [Google Scholar] [CrossRef]
- Hasan, T.; Sun, Z.; Wang, F.; Bonaccorso, F.; Tan, P.H.; Rozhin, A.G.; Ferrari, A.C. Nanotube–polymer composites for ultrafast photonics. Adv. Mater. 2009, 21, 3874–3899. [Google Scholar] [CrossRef]
- Fu, B.; Hua, Y.; Xiao, X.; Yang, H.; Yang, C.; Sun, Z. Graphene based broadband untrafast fiber lasers at 1, 1.5 and 2 µm. In Proceedings of the Optics & Photonics Days, Turku, Finland, 20–22 May 2014. [Google Scholar]
- Chen, Y.; Jiang, G.; Chen, S.; Guo, Z.; Yu, X.; Zhao, C.; Zhang, H.; Bao, Q.; Wen, S.; Tang, D.; et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express 2015, 23, 12823–12833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Jussila, H.; Karvonen, L.; Ye, G.; Lipsanen, H.; Chen, X.; Sun, Z. Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation. Sci. Rep. 2015, 5, 15899. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhang, H.; Qi, X.; Chen, Y.; Wang, Z.; Wen, S.; Tang, D. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett. 2012, 101, 211106. [Google Scholar] [CrossRef]
- Pinghua, T.; Xiaoqi, Z.; Chujun, Z.; Yong, W.; Han, Z.; Deyuan, S.; Shuangchun, W.; Dingyuan, T.; Dianyuan, F. Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser. IEEE Photonics J. 2013, 5, 1500707. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, S.B.; Zheng, J.; Du, J.; Wen, S.C.; Tang, D.Y.; Loh, K.P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 2014, 22, 7249–7260. [Google Scholar] [CrossRef]
- Xu, B.; Cheng, Y.; Wang, Y.; Huang, Y.; Peng, J.; Luo, Z.; Xu, H.; Cai, Z.; Weng, J.; Moncorge, R. Passively Q-switched Nd:YAlO3 nanosecond laser using MoS2as saturable absorber. Opt. Express 2014, 22, 28934–28940. [Google Scholar] [CrossRef]
- Jhon, Y.I.; Koo, J.; Anasori, B.; Seo, M.; Lee, J.H.; Gogotsi, Y.; Jhon, Y.M. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater. 2017, 29, 1702496. [Google Scholar] [CrossRef]
- Fu, B.; Sun, J.; Wang, C.; Shang, C.; Xu, L.; Li, J.; Zhang, H. MXenes: Synthesis, optical properties, and applications in ultrafast photonics. Small 2021, 17, 2006054. [Google Scholar] [CrossRef]
- Fu, B.; Sun, J.; Cheng, Y.; Ouyang, H.; Compagnini, G.; Yin, P.; Wei, S.; Li, S.; Li, D.; Scardaci, V.; et al. Recent progress on metal-based nanomaterials: Fabrications, optical properties, and applications in ultrafast photonics. Adv. Funct. Mater. 2021, 31, 2107363. [Google Scholar] [CrossRef]
- Li, X.; An, M.; Li, G.; Han, Y.; Guo, P.; Chen, E.; Hu, J.; Song, Z.; Lu, H.; Lu, J. MOF-derived porous dodecahedron rGO-Co3O4 for robust pulse generation. Adv. Mater. Interfaces 2022, 9, 2101933. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Wang, Y.; Zhang, X.; Hui, Z.; Zhang, H.; Wageh, S.; Al-Hartomy, O.A.; Al-Sehemi, A.G. Optical-intensity modulators with PbTe thermoelectric nanopowders for ultrafast photonics. Appl. Mater. Today 2022, 28, 101546. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Gao, Y.; Li, X.; Lu, H.; Wang, Y.; Feng, J.-j.; Lu, J.; Ma, K.; Chen, X. Porous nickel oxide micron polyhedral particles for high-performance ultrafast photonics. Opt. Laser Technol. 2022, 146, 107546. [Google Scholar] [CrossRef]
- Elim, H.I.; Yang, J.; Lee, J.-Y.; Mi, J.; Ji, W. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods. Appl. Phys. Lett. 2006, 88, 083107. [Google Scholar] [CrossRef]
- De Boni, L.; Wood, E.L.; Toro, C.; Hernandez, F.E. Optical saturable absorption in gold nanoparticles. Plasmonics 2008, 3, 171–176. [Google Scholar] [CrossRef]
- Baida, H.; Mongin, D.; Christofilos, D.; Bachelier, G.; Crut, A.; Maioli, P.; Del Fatti, N.; Vallee, F. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys. Rev. Lett. 2011, 107, 057402. [Google Scholar] [CrossRef]
- Wang, G.; Liu, T.; Chao, J.; Jin, H.; Liu, J.; Zhang, H.; Lyu, W.; Yin, P.; Al-Ghamdi, A.; Wageh, S.; et al. Recent advances and challenges in ultrafast photonics enabled by metal nanomaterials. Adv. Opt. Mater. 2022, 10, 2200443. [Google Scholar] [CrossRef]
- Trügler, A. Optical Properties of Metallic Nanoparticles; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Condorelli, M.; Litti, L.; Pulvirenti, M.; Scardaci, V.; Meneghetti, M.; Compagnini, G. Silver nanoplates paved PMMA cuvettes as a cheap and re-usable plasmonic sensing device. Appl. Surf. Sci. 2021, 566, 150701. [Google Scholar] [CrossRef]
- Jiang, T.; Xu, Y.; Tian, Q.; Liu, L.; Kang, Z.; Yang, R.; Qin, G.; Qin, W. Passively Q-switching induced by gold nanocrystals. Appl. Phys. Lett. 2012, 101, 151122. [Google Scholar] [CrossRef]
- Kang, Z.; Li, Q.; Gao, X.J.; Zhang, L.; Jia, Z.X.; Feng, Y.; Qin, G.S.; Qin, W.P. Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength. Laser Phys. Lett. 2014, 11, 035102. [Google Scholar] [CrossRef]
- Kang, Z.; Liu, M.Y.; Gao, X.J.; Li, N.; Yin, S.Y.; Qin, G.S.; Qin, W.P. Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber. Laser Phys. Lett. 2015, 12, 045105. [Google Scholar] [CrossRef]
- Naharuddin, N.Z.A.; Abu Bakar, M.H.; Sadrolhosseini, A.R.; Tamchek, N.; Alresheedi, M.T.; Abas, A.F.; Mahdi, M.A. Pulsed-laser-ablated gold-nanoparticles saturable absorber for mode-locked erbium-doped fiber lasers. Opt. Laser Technol. 2022, 150, 107875. [Google Scholar] [CrossRef]
- Zheng, C.; Wenzhe, C.; Xiaoyun, Y.; Cai, S.; Xiao, X. Fabricating silver nanoplate/hybrid silica gel glasses and investigating their nonlinear optical absorption behavior. Opt. Mater. 2014, 36, 982–987. [Google Scholar] [CrossRef]
- Condorelli, M.; Scardaci, V.; Pulvirenti, M.; D’Urso, L.; Neri, F.; Compagnini, G.; Fazio, E. Surface plasmon resonance dependent third-order optical nonlinearities of silver nanoplates. Photonics 2021, 8, 299. [Google Scholar] [CrossRef]
- Konda, S.R.; Maurya, S.K.; Ganeev, R.A.; Lai, Y.H.; Guo, C.; Li, W. Third-order nonlinear optical effects of silver nanoparticles and third harmonic generation from their plasma plumes. Optik 2021, 245, 167680. [Google Scholar] [CrossRef]
- Mohamed, T.; El-Motlak, M.H.; Mamdouh, S.; Ashour, M.; Ahmed, H.; Qayyum, H.; Mahmoud, A. Excitation wavelength and colloids concentration-dependent nonlinear optical properties of silver nanoparticles synthesized by laser ablation. Materials 2022, 15, 7348. [Google Scholar] [CrossRef]
- Ahmad, H.; Samion, M.Z.; Muhamad, A.; Sharbirin, A.S.; Ismail, M.F. Passively Q-switched thulium-doped fiber laser with silver-nanoparticle film as the saturable absorber for operation at 2.0 µm. Laser Phys. Lett. 2016, 13, 126201. [Google Scholar] [CrossRef]
- Rosdin, R.Z.R.R.; Ahmad, M.T.; Muhammad, A.R.; Jusoh, Z.; Arof, H.; Harun, S.W. Nanosecond pulse generation with silver nanoparticle saturable absorber. Chin. Phys. Lett. 2019, 36, 054202. [Google Scholar] [CrossRef]
- Fu, B.; Wang, P.; Li, Y.; Condorelli, M.; Fazio, E.; Sun, J.; Xu, L.; Scardaci, V.; Compagnini, G. Passively Q-switched Yb-doped all-fiber laser based on Ag nanoplates as saturable absorber. Nanophotonics 2020, 9, 3873–3880. [Google Scholar] [CrossRef]
- Fu, B.; Zhang, C.; Wang, P.; Condorelli, M.; Pulvirenti, M.; Fazio, E.; Shang, C.; Li, J.; Li, Y.; Compagnini, G.; et al. Nonlinear optical properties of Ag nanoplates plasmon resonance and applications in ultrafast photonics. J. Light. Technol. 2021, 39, 2084–2090. [Google Scholar] [CrossRef]
- Fathima, R.; Mujeeb, A. Nonlinear optical investigations of laser generated gold, silver and gold-silver alloy nanoparticles and optical limiting applications. J. Alloy. Compd. 2021, 858, 157667. [Google Scholar] [CrossRef]
- Sackuvich, R.K.; Peppers, J.M.; Myoung, N.; Badikov, V.V.; Fedorov, V.V.; Mirov, S.B. Spectroscopic characterization of Ti3+:AgGaS2 and Fe2+:MgAl2O4 crystals for mid-IR laser applications. In Proceedings of the Solid State Lasers XXI: Technology and Devices, San Francisco, CA, USA, 22–25 January 2012; pp. 427–432. [Google Scholar]
- Cesca, T.; García-Ramírez, E.V.; Sánchez-Esquivel, H.; Michieli, N.; Kalinic, B.; Gómez-Cervantes, J.M.; Rangel-Rojo, R.; Reyes-Esqueda, J.A.; Mattei, G. Dichroic nonlinear absorption response of silver nanoprism arrays. RSC Adv. 2017, 7, 17741–17747. [Google Scholar] [CrossRef] [Green Version]
- Compagnini, G.; Condorelli, M.; Fragalà, M.E.; Scardaci, V.; Tinnirello, I.; Puglisi, O.; Neri, F.; Fazio, E. Growth kinetics and sensing features of colloidal silver nanoplates. J. Nanomater. 2019, 2019, 7084731. [Google Scholar] [CrossRef]
- Scardaci, V. Anisotropic silver nanomaterials by photochemical reactions: Synthesis and applications. Nanomaterials 2021, 11, 2226. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Mou, C.; Xu, L.; Wang, S.; Pu, S.; Zeng, X. Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber. Appl. Phys. Express 2016, 9, 042701. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.; Reduan, S.A.; Yusoff, N. Chitosan capped nickel oxide nanoparticles as a saturable absorber in a tunable passively Q-switched erbium doped fiber laser. RSC Adv. 2018, 8, 25592–25601. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.; Lee, C.S.; Ismail, M.A.; Ali, Z.A.; Reduan, S.A.; Ruslan, N.E.; Harun, S.W. Tunable Q-switched fiber laser using zinc oxide nanoparticles as a saturable absorber. Appl. Opt. 2016, 55, 4277–4281. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, H.; Zhang, C.; Li, Z.; Sheng, Y.; Li, C.; Bao, X.; Man, B.; Jiao, Y.; Jiang, S. Indium tin oxide nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber laser. Opt. Mater. Express 2017, 7, 3494–3502. [Google Scholar] [CrossRef]
- Hisamuddin, N.; Jusoh, Z.; Zakaria, U.N.; Zulkifli, M.Z.; Latiff, A.A.; Yasin, M.; Ahmad, H.; Harun, S.W. Q-switched Raman fiber laser with titanium dioxide based saturable absorber. Optoelectron. Adv. Mater. 2017, 11, 127–130. [Google Scholar]
- Wang, X.-D.; Liang, Q.-M.; Luo, A.-P.; Luo, Z.-C.; Liu, M.; Zhu, Y.-F. Mode locking and multiwavelength Q-switching in a dumbbell-shaped fiber laser with a gold nanorod saturable absorber. Opt. Eng. 2019, 58, 056113. [Google Scholar] [CrossRef]
- Muhammad, A.R.; Ahmad, M.T.; Zakaria, R.; Rahim, H.R.A.; Yusoff, S.F.A.Z.; Hamdan, K.S.; Yusof, H.H.M.; Arof, H.; Harun, S.W. Q-switching pulse operation in 1.5-µm region using copper nanoparticles as saturable absorber. Chin. Phys. Lett. 2017, 34, 034205. [Google Scholar] [CrossRef]
Metal-Based SA | Integration | SNR (dB) | Output Power (mW) | Pulse Energy (nJ) | Ref. |
---|---|---|---|---|---|
Fe3O4 | Deposition | - | 0.794 | 23.76 | [61] |
NiO | Chitosan | 43.3 | - | 15.3 | [62] |
ZnO | Polymer film | 42 | 2.77 | 46 | [63] |
ITO | Deposition | - | 1.72 | 21.16 | [64] |
TiO2 | PVA | 37 | 0.826 | 5.81 | [65] |
Au | PVA | - | 1.4 | 44.29 | [66] |
Cu | PVA | 50.9 | 1.86 | 18.38 | [67] |
Ag | PVA | 45 | 2.9 | 57.8 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, W.; Cheng, Y.; An, J.; Condorelli, M.; Pulvirenti, M.; Compagnini, G.; Wang, X.; Fu, B.; Scardaci, V. Silver Nanoplate Composites as Nonlinear Saturable Absorbers for a Q-Switched Laser. Photonics 2022, 9, 835. https://doi.org/10.3390/photonics9110835
Lyu W, Cheng Y, An J, Condorelli M, Pulvirenti M, Compagnini G, Wang X, Fu B, Scardaci V. Silver Nanoplate Composites as Nonlinear Saturable Absorbers for a Q-Switched Laser. Photonics. 2022; 9(11):835. https://doi.org/10.3390/photonics9110835
Chicago/Turabian StyleLyu, Wenhao, Yuan Cheng, Jiayi An, Marcello Condorelli, Mario Pulvirenti, Giuseppe Compagnini, Xiaogang Wang, Bo Fu, and Vittorio Scardaci. 2022. "Silver Nanoplate Composites as Nonlinear Saturable Absorbers for a Q-Switched Laser" Photonics 9, no. 11: 835. https://doi.org/10.3390/photonics9110835
APA StyleLyu, W., Cheng, Y., An, J., Condorelli, M., Pulvirenti, M., Compagnini, G., Wang, X., Fu, B., & Scardaci, V. (2022). Silver Nanoplate Composites as Nonlinear Saturable Absorbers for a Q-Switched Laser. Photonics, 9(11), 835. https://doi.org/10.3390/photonics9110835