A Novel Metaheuristic Approach for Solar Photovoltaic Parameter Extraction Using Manufacturer Data
Abstract
:1. Introduction
- In the present study, a new model was proposed to estimate solar cell parameters using metaheuristic techniques requiring only manufacturer data instead of experimental data.
- The present model is more efficient as compared with other models in terms of accuracy, computational cost, and data required, whereas numerical methods are complex, slow, and based on assumptions. In addition, machine learning techniques require big datasets, more tuning, and careful input selection. Our model requires only three data points, which is even lesser than the requirements of solar cell modeling using experimental datasets.
- The three data points used from the manufacturer data sheet of PV modules were short circuit current , open circuit voltage , and the maximum power point current and voltage ,.
- Two different types of solar modules, a single-cell module called R.T.C. France and a 36-cell module called PWP-201, were used for validation.
- A comparison of two metaheuristic algorithms, namely, genetic algorithm and particle swarm algorithm was presented.
- The results of the proposed model were further validated under varying solar irradiance conditions and compared to the same model using experimental datasets from the literature.
2. Materials and Methods
2.1. Single-Diode Five Parameters Model
2.2. Objective Function
2.3. Modeling Using MATLAB/Simulink
2.4. Genetic Algorithm
- Selection of the main GA parameters, which are the size of the initial population, the number of maximum generations that can be reached, and the crossover and mutation probabilities.
- Random initialization of the population. Generate matrix (X) representing (, , , n, )
- Calculation of the fitness using Equation (5) f(X)
- Selection of the best populationMax (f (X))
- Reproduce the selected individuals using variation operators considering the chosen probability, such as Crossover and Mutation, to generate new offsprings.{If rand () < probability:
Operate Crossover (Equation (7))/Mutation (Equation (6));
Else:
Don’t Change anything;
End} - where, is the gauss error function, xi is the offspring I, is a random value between [0, 1], and are children of the parents and , and is calculated in (Equation (8)) by considering , the constant which decides the range constraint of the offsprings and r, which is a random number
- Compare the fitness of each individual and determine which ones will survive from the offsprings and the parentsMin (fitness (parents), fitness (offsprings))
- Stop criteria identification
2.5. Particle Swarm Optimization
- Choosing the main parameters, such as the number of particles, the velocity, and the positions;
- Initialization of the population. Generate matrix (X) representing (, , , n, );
- Calculate the fitness of each particle using Equation (5);
- Compare each particle with other particles based on the fitness and choose the best position to be the global point;
- Update the particles’ velocities using (Equation (9)) and send them to new positions:
- Move the particles to new positions:
- Check the stopping criteria.
2.6. The New Approach
3. Results and Discussion
4. Conclusions and Follow-Up Research
- The results showed that using the full data points, both GA and PSO algorithms obtained reasonable optimization results, which led to similar or sometimes better results than those obtained in previous studies.
- The proposed model considers only three measurements, taken from the manufacturer datasheets, and this makes it a very effective methodology to estimate solar cell parameters for all commercial modules as there is no need to set up any experimental measurements for newly established PV-based microgrids.
- Testing the proposed model on the R.T.C France solar cell proved that this new model is able to perform as accurately as the reference model under all conditions; however, the error increased when the solar radiation decreased where the maximum RMSE detected under 200 W/m2 solar radiation was 0.0032 as compared with 7.6212 × 10−4 under standard conditions.
- Using PWP201 for validation also showed that this model can be used for all commercial solar modules.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malik, P.; Chandel, S.S. A new integrated single-diode solar cell model for photovoltaic power prediction with experimental validation under real outdoor conditions. Int. J. Energy Res. 2020, 45, 759–771. [Google Scholar] [CrossRef]
- Tamrakar, V.; Gupta, S.C.; Sawle, Y. Single-Diode and Two-Diode Pv Cell Modeling Using Matlab For Studying Characteristics of Solar Cell Under Varying Conditions. Electr. Comput. Eng. Int. J. 2015, 4, 67–77. [Google Scholar] [CrossRef]
- Malik, P.; Chandel, R.; Chandel, S.S. A power prediction model and its validation for a roof top photovoltaic power plant considering module degradation. Sol. Energy 2021, 224, 184–194. [Google Scholar] [CrossRef]
- Rawat, R.; Chandel, S.S. Review of Maximum-Power-Point Tracking Techniques for Solar-Photovoltaic Systems. Energy Technol. 2013, 1, 438–448. [Google Scholar] [CrossRef]
- Sharma, V.; Chandel, S.S. Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review. Renew. Sustain. Energy Rev. 2013, 27, 753–767. [Google Scholar] [CrossRef]
- Rasheed, M.; Alabdali, O.; Shihab, S. A New Technique for Solar Cell Parameters Estimation of the Single-Diode Model. J. Phys. Conf. Ser. 2021, 1879, 032120. [Google Scholar] [CrossRef]
- Rasheed, M.; Al-Darraji, M.N.; Shihab, S.; Rashid, A.; Rashid, T. The numerical Calculations of Single-Diode Solar Cell Modeling Parameters. J. Phys. Conf. Ser. 2021, 1963, 1. [Google Scholar] [CrossRef]
- Zagrouba, M.; Sellami, A.; Bouaïcha, M.; Ksouri, M. Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction. Sol. Energy 2010, 84, 860–866. [Google Scholar] [CrossRef]
- El-Naggar, K.M.; AlRashidi, M.R.; AlHajri, M.F.; Al-Othman, A.K. Simulated Annealing algorithm for photovoltaic parameters identification. Sol. Energy 2012, 86, 266–274. [Google Scholar] [CrossRef]
- Messaoud, R.B. Extraction of uncertain parameters of single-diode model of a photovoltaic panel using simulated annealing optimization. Energy Rep. 2020, 6, 350–357. [Google Scholar] [CrossRef]
- Soon, J.J.; Low, K.S. Photovoltaic model identification using particle swarm optimization with inverse barrier constraint. IEEE Trans. Power Electron. 2012, 27, 3975–3983. [Google Scholar] [CrossRef]
- Cortez, R.; Garrido, R.; Mezura-Montes, E. Spectral Richness PSO algorithm for parameter identification of dynamical systems under non-ideal excitation conditions. Appl. Soft Comput. 2022, 128, 109490. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Chakrabortty, R.K.; Sallam, K.; Ryan, M.J. An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations. Energy Convers. Manag. 2020, 227, 113614. [Google Scholar] [CrossRef]
- Naeijian, M.; Rahimnejad, A.; Ebrahimi, S.M.; Pourmousa, N.; Gadsden, S.A. Parameter estimation of PV solar cells and modules using Whippy Harris Hawks Optimization Algorithm. Energy Rep. 2021, 7, 4047–4063. [Google Scholar] [CrossRef]
- Ebrahimi, S.M.; Salahshour, E.; Malekzadeh, M.; Gordillo, F. Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm. Energy 2019, 179, 358–372. [Google Scholar] [CrossRef]
- Awadallah, M.A. Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data. Energy Convers. Manag. 2016, 113, 312–320. [Google Scholar] [CrossRef]
- AlHajri, M.F.; El-Naggar, K.M.; AlRashidi, M.R.; Al-Othman, A.K. Optimal extraction of solar cell parameters using pattern search. Renew. Energy 2012, 44, 238–245. [Google Scholar] [CrossRef]
- Diab, A.A.Z.; Sultan, H.M.; Aljendy, R.; Al-Sumaiti, A.S.; Shoyama, M.; Ali, Z.M. Tree Growth Based Optimization Algorithm for Parameter Extraction of Different Models of Photovoltaic Cells and Modules. IEEE Access 2020, 8, 119668–119687. [Google Scholar] [CrossRef]
- Iab, A.A.Z.D.; Sultan, H.M.; Do, T.D.; Kamel, O.M.; Mossa, M.A. Coyote Optimization Algorithm for Parameters Estimation of Various Models of Solar Cells and PV Modules. IEEE Access 2020, 8, 111102–111140. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Mirjalili, S.; Chakrabortty, R.K.; Ryan, M.J. Solar photovoltaic parameter estimation using an improved equilibrium optimizer. Sol. Energy 2020, 209, 694–708. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, X.; Heidari, A.A.; Chen, H. Evaluation of constraint in photovoltaic models by exploiting an enhanced ant lion optimizer. Sol. Energy 2020, 211, 503–521. [Google Scholar] [CrossRef]
- Louzazni, M.; Khouya, A.; Amechnoue, K.; Gandelli, A.; Mussetta, M.; Craciunescu, A. Metaheuristic algorithm for photovoltaic parameters: Comparative study and prediction with a Firefly algorithm. Appl. Sci. 2018, 8, 339. [Google Scholar] [CrossRef] [Green Version]
- El-Dabah, M.A.; El-Sehiemy, R.A.; Becherif, M.; Ebrahim, M.A. Parameter estimation of triple diode photovoltaic model using an artificial ecosystem-based optimizer. Int. Trans. Electr. Energy Syst. 2021, 31, e13043. [Google Scholar] [CrossRef]
- Ridha, H.M.; Hizam, H.; Mirjalili, S.; Othman, M.L.; Ya’Acob, M.E.; Ahmadipour, M.; Ismaeel, N.Q. On the problem formulation for parameter extraction of the photovoltaic model: Novel integration of hybrid evolutionary algorithm and Levenberg Marquardt based on adaptive damping parameter formula. Energy Convers. Manag. 2022, 256, 115403. [Google Scholar] [CrossRef]
- Tajjour, S.; Garg, S.; Chandel, S.S.; Sharma, D. A novel hybrid artificial neural network technique for the early skin cancer diagnosis using color space conversions of original images. Int. J. Imaging Syst. Technol. 2022; Early View. [Google Scholar] [CrossRef]
- Tajjour, S.; Chandel, S. Power Generation Forecasting of a Solar Photovoltaic Power Plant by a Novel Transfer Learning Technique with Small Solar Radiation and Power Generation Training Data Sets. SSRN Electron. J. 2022; Early View. [Google Scholar] [CrossRef]
- Tajjour, S.; Chandel, S.S. A Novel Strategy for Solar Irradiance Forecasting Using Deep Learning Techniques and Validation for a Himalayan Location in India as a Case Study. SSRN Electron. J. 2022; Early View. [Google Scholar] [CrossRef]
- Maleki, A.; Haghighi, A.; Assad, M.e.; Mahariq, I.; Nazari, M.A. A review on the approaches employed for cooling PV cells. Sol. Energy 2020, 209, 170–185. [Google Scholar] [CrossRef]
- Ustun, T.S.; Nakamura, Y.; Hashimoto, J.; Otani, K. Performance analysis of PV panels based on different technologies after two years of outdoor exposure in Fukushima, Japan. Renew. Energy 2018, 136, 159–178. [Google Scholar] [CrossRef]
- Yaqoob, S.J.; Saleh, A.L.; Motahhir, S.; Agyekum, E.B.; Nayyar, A.; Qureshi, B. Comparative study with practical validation of photovoltaic monocrystalline module for single and double diode models. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Haldurai, L.; Madhubala, T.; Rajalakshmi, R. A Study on Genetic Algorithm and its Applications. Int. J. Comput. Sci. Eng. 2016, 4, 10. Available online: https://www.ijcseonline.org (accessed on 15 June 2022).
- Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 4, 66–72. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Elaziz, M.A. Review on applications of particle swarm optimization in solar energy systems. Int. J. Environ. Sci. Technol. 2019, 16, 1159–1170. [Google Scholar] [CrossRef]
- Ye, M.; Wang, X.; Xu, Y. Parameter extraction of solar cells using particle swarm optimization. J. Appl. Phys. 2009, 105, 094502. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, P.; Chen, Z.; Cheng, S. A Population Classification Evolution Algorithm for the Parameter Extraction of Solar Cell Models. Int. J. Photoenergy 2016, 2016, 16–18. [Google Scholar] [CrossRef] [Green Version]
- Oliva, D.; Cuevas, E.; Pajares, G. Parameter identification of solar cells using artificial bee colony optimization. Energy 2014, 72, 93–102. [Google Scholar] [CrossRef]
- Guo, L.; Meng, Z.; Sun, Y.; Wang, L. Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Convers. Manag. 2016, 108, 520–528. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rezazadeh, A. Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach. Sol. Energy 2013, 90, 123–133. [Google Scholar] [CrossRef]
- Hachana, O.; Hemsas, K.E.; Tina, G.M.; Ventura, C. Comparison of different metaheuristic algorithms for parameter identification of photovoltaic cell/module. J. Renew. Sustain. Energy 2013, 5, 5. [Google Scholar] [CrossRef]
- Fatema, N.; Malik, H. Data-Driven Occupancy Detection Hybrid Model Using Particle Swarm Optimization Based Artificial Neural Network. In Springer Nature Book: Metaheuristic and Evolutionary Computation: Algorithms and Applications, under Book Series Studies in Computational Intelligence; Springer: Singapore, 2020; pp. 283–297. [Google Scholar] [CrossRef]
- Minai, A.F.; Malik, H. Metaheuristics Paradigms for Renewable Energy Systems: Advances in Optimization Algorithms. In Springer Nature Book: Metaheuristic and Evolutionary Computation: Algorithms and Applications, under Book Series Studies in Computational Intelligence; Springer: Singapore, 2020; pp. 35–61. [Google Scholar] [CrossRef]
- Chen, H.; Jiao, S.; Wang, M.; Heidari, A.A.; Zhao, X. Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J. Clean. Prod. 2020, 244, 118778. [Google Scholar] [CrossRef]
- Yu, K.; Qu, B.; Yue, C.; Ge, S.; Chen, X.; Liang, J. A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Appl. Energy 2019, 237, 241–257. [Google Scholar] [CrossRef]
- Yu, K.; Chen, X.; Wang, X.; Wang, Z. Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization. Energy Convers. Manag. 2017, 145, 233–246. [Google Scholar] [CrossRef]
- Niu, Q.; Zhang, H.; Li, K. An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models. Int. J. Hydrogen Energy 2014, 39, 3837–3854. [Google Scholar] [CrossRef]
Variables | R.T.C. France Cell | PWP-201 |
---|---|---|
, short circuit current | 0.760 | 1.0317 |
, open circuit voltage | 0.5728 | 16.778 |
, current at MPP | 0.69119 | 0.912 |
, voltage at MPP | 0.45 | 12.649 |
, number of cells | 1 | 36 |
PWP-201 | R.T.C. France | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | n | |||||||||
Lower limit | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
Upper limit | 50 | 2 | 1000 | 50 | 2 | 1 | 0.5 | 100 | 2 | 1 |
Algorithm | × 10−6 | n | RMSE × 10−4 | |||
---|---|---|---|---|---|---|
GA (This Study) | 0.3231 | 0.0364 | 53.7378 | 1.4812 | 0.7608 | 9.8602 |
PSO (This Study) | 0.3218 | 0.0364 | 53.6067 | 1.4808 | 0.7608 | 9.8636 |
PCE [35] | 0.323021 | 0.036377 | 53.718525 | 1.481074 | 0.760776 | 9.86022 |
ABC [36] | 0.3251 | 0.0364 | 53.6433 | 1.4817 | 0.7608 | 9.8620 |
CSO [37] | 0.3230 | 0.03638 | 53.7185 | 1.48118 | 0.76078 | 9.8602 |
BMO [38] | 0.32479 | 0.03636 | 53.8716 | 1.48173 | 0.76077 | 9.8608 |
ABC-DE [39] | 0.32302 | 0.03637 | 53.7185 | 1.47986 | 0.76077 | 9.8602 |
With Three Points | ||||||
GA | 0.4696 | 0.0285 | 38.2219 | 1.5207 | 0.7606 | 1.4153 × 10−3 |
PSO | 0.2994 | 0.0375 | 67.4972 | 1.4733 | 0.7604 | 9.6481 × 10−4 |
S.N | Experimental Data | WH [14] | ABC [36] | BMO [38] | PSO Reference Model | PSO with 3 Data Points | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VL | IL | Error | Error | Error | Error | Error | ||||||
1 | −0.2057 | 0.764 | 0.764067 | −0.000088 | 0.7641 | −0.0001 | 0.763965 | 0.00004 | 0.76412 | 0.000119 | 0.76302 | −0.000977 |
2 | −0.1291 | 0.762 | 0.762647 | −0.000849 | 0.7626 | −0.0006 | 0.762593 | −0.00059 | 0.76269 | 0.000691 | 0.76189 | −0.00011 |
3 | −0.0588 | 0.7605 | 0.761344 | −0.001109 | 0.7613 | −0.0008 | 0.761334 | −0.00083 | 0.76138 | 0.000881 | 0.76085 | 0.000349 |
4 | 0.0057 | 0.7605 | 0.760148 | 0.000462 | 0.7601 | 0.0004 | 0.760177 | 0.00032 | 0.76018 | −0.000323 | 0.75989 | −0.000607 |
5 | 0.0646 | 0.76 | 0.759054 | 0.001246 | 0.759 | 0.0010 | 0.759117 | 0.00088 | 0.75908 | −0.000924 | 0.75902 | −0.000982 |
6 | 0.1185 | 0.759 | 0.758044 | 0.001259 | 0.758 | 0.0010 | 0.758135 | 0.00087 | 0.75806 | −0.000939 | 0.75821 | −0.00079 |
7 | 0.1678 | 0.757 | 0.757096 | −0.000127 | 0.7571 | −0.0001 | 0.757205 | −0.00021 | 0.75711 | 0.000108 | 0.75745 | 0.000447 |
8 | 0.2132 | 0.757 | 0.75615 | 0.001123 | 0.7561 | 0.0009 | 0.756262 | 0.00074 | 0.75616 | −0.000844 | 0.75667 | −0.000329 |
9 | 0.2545 | 0.7555 | 0.755097 | 0.000532 | 0.755 | 0.0005 | 0.755193 | 0.00031 | 0.7551 | −0.000399 | 0.75578 | 0.000277 |
10 | 0.2924 | 0.754 | 0.753676 | 0.000428 | 0.7536 | 0.0004 | 0.753732 | 0.00027 | 0.75368 | −0.000323 | 0.7545 | 0.000503 |
11 | 0.3269 | 0.7505 | 0.751401 | −0.001199 | 0.7513 | −0.0008 | 0.751397 | −0.00090 | 0.7514 | 0.000904 | 0.75237 | 0.001865 |
12 | 0.3585 | 0.7465 | 0.74736 | −0.001151 | 0.7473 | −0.0008 | 0.747287 | −0.00079 | 0.74737 | 0.000868 | 0.74844 | 0.001941 |
13 | 0.3873 | 0.7385 | 0.740107 | −0.002171 | 0.7401 | −0.0016 | 0.739973 | −0.00147 | 0.74013 | 0.001633 | 0.74128 | 0.002776 |
14 | 0.4137 | 0.728 | 0.727403 | 0.00082 | 0.7273 | 0.0007 | 0.727243 | 0.00076 | 0.7274 | −0.0006 | 0.72853 | 0.000532 |
15 | 0.4373 | 0.7065 | 0.706954 | −0.000642 | 0.7069 | −0.0004 | 0.706819 | −0.00032 | 0.707 | 0.00049 | 0.708 | 0.001488 |
16 | 0.459 | 0.6755 | 0.67529 | 0.00031 | 0.6752 | 0.0003 | 0.675224 | 0.00028 | 0.6753 | −0.0002 | 0.676 | 0.000478 |
17 | 0.4784 | 0.632 | 0.630875 | 0.001782 | 0.6307 | 0.0013 | 0.630895 | 0.00111 | 0.63077 | −0.00123 | 0.63095 | −0.001055 |
18 | 0.496 | 0.573 | 0.572071 | 0.001623 | 0.5718 | 0.0012 | 0.572157 | 0.00084 | 0.57194 | −0.00106 | 0.57145 | −0.001546 |
19 | 0.5119 | 0.499 | 0.49948 | −0.000962 | 0.4995 | −0.0005 | 0.499589 | −0.00059 | 0.49961 | 0.000606 | 0.49844 | −0.000558 |
20 | 0.5265 | 0.413 | 0.413485 | −0.001173 | 0.4136 | −0.0006 | 0.413569 | −0.00057 | 0.41364 | 0.000637 | 0.41189 | −0.001114 |
21 | 0.5398 | 0.3165 | 0.317214 | −0.002251 | 0.3175 | −0.0010 | 0.317245 | −0.00074 | 0.3175 | 0.0001 | 0.31544 | −0.00106 |
22 | 0.5521 | 0.212 | 0.212101 | −0.000477 | 0.2121 | −0.0001 | 0.212075 | −0.00008 | 0.21213 | 0.000131 | 0.21021 | −0.001794 |
23 | 0.5633 | 0.1035 | 0.102722 | 0.00757 | 0.1022 | 0.0013 | 0.102659 | 0.00084 | 0.10223 | −0.001268 | 0.10097 | −0.002527 |
24 | 0.5736 | −0.0100 | −0.009246 | 0.081536 | −0.0086 | −0.0014 | −0.00931 | −0.00069 | −0.0087 | 0.001279 | −0.0086 | 0.00136 |
25 | 0.5833 | −0.1230 | −0.124378 | −0.011080 | −0.1254 | 0.0024 | −0.12439 | 0.00139 | −0.1255 | −0.002487 | −0.12348 | −0.000482 |
26 | 0.59 | −0.2100 | −0.209190 | 0.00387 | −0.2084 | −0.0016 | −0.20914 | −0.00086 | −0.2084 | 0.001577 | −0.20447 | 0.00553 |
RMSE | 9.8602 × 10−4 | 9.8629 × 10−4 | 9.8608 × 10−4 | 9.8624 × 10−4 | 16 × 10−4 |
Algorithm | × 10−6 | n | RMSE × 10−3 | |||
---|---|---|---|---|---|---|
GA (This Study) | 3.4650 | 1.2018 | 975.7689 | 1.3507 | 1.0305 | 2.4 |
PSO (This Study) | 3.4203 | 1.2029 | 951.6120 | 1.3493 | 1.0307 | 2.4 |
WHHO [14] | 3.482109 | 1.201274 | 981.905230 | 1.349987 | 1.030514 | 2.42507 |
EHHO [42] | 3.459968 | 1.201853 | 971.276026 | 1.349314 | 1.030583 | 2.42516 |
JAYA [43] | 3.4931 | 1.2014 | 1000 | 1.3514 | 1.0307 | 2.42778 |
STLBO [44] | 3.4824 | 1.2013 | 982.0387 | 1.3511 | 1.0305 | 2.42507 |
TLABC [45] | 3.4826 | 1.2013 | 982.1815 | 1.3512 | 1.0305 | 2.42507 |
Using only three points | ||||||
GA | 1.0023 | 1.4927 | 858.7274 | 1.2296 | 1.0318 | 1.2167 × 10−4 |
PSO | 4.8783 | 1.0698 | 741.0845 | 1.3889 | 1.0315 | 1.9172 × 10−5 |
S.N | Experimental data | WHHO [14] | JAYA [43] | EHHO [42] | PSO Output Using Three Data Points | GA Output Using Three Data Points | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
V | I | Error | Error | Error | Error | Error | ||||||
1 | 0.1248 | 1.0315 | 1.029122 | 0.00231 | 1.02911964 | 0.00238036 | 1.0286 | 0.0029 | 1.0298 | −0.001665 | 1.0299 | −0.001641 |
2 | 1.8093 | 1.03 | 1.027385 | 0.002546 | 1.02738133 | 0.00261867 | 1.0269 | 0.003 | 1.0275 | −0.002464 | 1.0279 | −0.002112 |
3 | 3.3511 | 1.026 | 1.025742 | 0.000251 | 1.02574186 | 0.00025814 | 1.0255 | 0.0005 | 1.0254 | −0.000623 | 1.0261 | 5.9 × 10−5 |
4 | 4.7622 | 1.022 | 1.024104 | −0.00205 | 1.02410704 | 0.00210704 | 1.0239 | 0.0019 | 1.0233 | 0.001254 | 1.0243 | 0.002301 |
5 | 6.0538 | 1.018 | 1.022283 | −0.00419 | 1.02229155 | 0.00429155 | 1.0222 | 0.0042 | 1.021 | 0.002973 | 1.0225 | 0.004467 |
6 | 7.2364 | 1.0155 | 1.019917 | −0.00433 | 1.01993032 | 0.00443032 | 1.0199 | 0.0044 | 1.0182 | 0.002661 | 1.0203 | 0.00475 |
7 | 8.3189 | 1.014 | 1.016351 | −0.00231 | 1.01636269 | 0.00236269 | 1.0164 | 0.0024 | 1.0142 | 0.000165 | 1.017 | 0.003042 |
8 | 9.3097 | 1.01 | 1.010491 | −0.00049 | 1.01049575 | 0.00049575 | 1.0106 | 0.0006 | 1.0079 | −0.002066 | 1.0118 | 0.001755 |
9 | 10.2163 | 1.0035 | 1.000679 | 0.00282 | 1.00062866 | 0.00287134 | 1.0007 | 0.0028 | 0.9979 | −0.00564 | 1.0026 | −0.000938 |
10 | 11.0449 | 0.988 | 0.984653 | 0.003399 | 0.98454823 | 0.00345177 | 0.9847 | 0.0033 | 0.9819 | −0.006115 | 0.9869 | −0.001068 |
11 | 11.8018 | 0.963 | 0.959697 | 0.003441 | 0.95952173 | 0.00347827 | 0.9596 | 0.0034 | 0.9575 | −0.005518 | 0.9616 | −0.001418 |
12 | 12.4929 | 0.9255 | 0.923049 | 0.002656 | 0.92283908 | 0.00266092 | 0.9229 | 0.0025 | 0.9221 | −0.003365 | 0.9232 | −0.002343 |
13 | 13.1231 | 0.8725 | 0.872588 | −0.0001 | 0.87260009 | 0.00010009 | 0.8727 | 0.0002 | 0.874 | 0.001497 | 0.8694 | −0.003142 |
14 | 13.6983 | 0.8075 | 0.80731 | 0.000235 | 0.80727477 | 0.00022523 | 0.8074 | 0.0001 | 0.8115 | 0.00401 | 0.7985 | −0.009035 |
15 | 14.2221 | 0.7265 | 0.727958 | −0.002 | 0.72833695 | 0.00183695 | 0.7284 | 0.0019 | 0.7357 | 0.009169 | 0.713 | −0.013542 |
16 | 14.6995 | 0.6345 | 0.636466 | −0.00309 | 0.63713835 | 0.00263835 | 0.6372 | 0.0027 | 0.6474 | 0.012892 | 0.6152 | −0.019293 |
17 | 15.1346 | 0.5345 | 0.535696 | −0.00223 | 0.53621321 | 0.00171321 | 0.5362 | 0.0017 | 0.5487 | 0.014183 | 0.5091 | −0.025423 |
18 | 15.5311 | 0.4275 | 0.428816 | −0.00307 | 0.42951127 | 0.00201127 | 0.4295 | 0.002 | 0.4429 | 0.015351 | 0.4002 | −0.027318 |
19 | 15.8929 | 0.3185 | 0.318669 | −0.00053 | 0.31877424 | 0.00027424 | 0.3188 | 0.0003 | 0.3315 | 0.012952 | 0.2907 | −0.027798 |
20 | 16.2229 | 0.2085 | 0.207857 | 0.003093 | 0.20738914 | 0.00111086 | 0.2074 | 0.0011 | 0.2176 | 0.009058 | 0.1848 | −0.023694 |
21 | 16.5241 | 0.101 | 0.098354 | 0.026901 | 0.09616674 | 0.00483326 | 0.0962 | 0.0048 | 0.1021 | 0.001117 | 0.0829 | −0.018135 |
22 | 16.7987 | −0.008 | −0.00817 | −0.02073 | −0.0083257 | 0.00032571 | −0.0082 | 0.0002 | −0.0089 | −0.000887 | −0.007 | 0.000956 |
23 | 17.0499 | −0.111 | −0.11097 | 0.000284 | −0.1109366 | 0.00006337 | −0.1108 | 0.0002 | −0.1193 | −0.008342 | −0.0924 | 0.018616 |
24 | 17.2793 | −0.209 | −0.20912 | −0.00056 | −0.2092472 | 0.00024715 | −0.2091 | 8.80 × 10−5 | −0.2268 | −0.017807 | −0.1708 | 0.038223 |
25 | 17.4885 | −0.303 | −0.30202 | 0.003237 | −0.3008631 | 0.00213691 | −0.3007 | 0.0023 | −0.3288 | −0.025837 | −0.2399 | 0.063061 |
RMSE | 2.42507 × 10−3 | 2.42507 × 10−3 | 2.42516 × 10−3 | 9.3 × 10−3 | 19.6 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajjour, S.; Chandel, S.S.; Malik, H.; Alotaibi, M.A.; Ustun, T.S. A Novel Metaheuristic Approach for Solar Photovoltaic Parameter Extraction Using Manufacturer Data. Photonics 2022, 9, 858. https://doi.org/10.3390/photonics9110858
Tajjour S, Chandel SS, Malik H, Alotaibi MA, Ustun TS. A Novel Metaheuristic Approach for Solar Photovoltaic Parameter Extraction Using Manufacturer Data. Photonics. 2022; 9(11):858. https://doi.org/10.3390/photonics9110858
Chicago/Turabian StyleTajjour, Salwan, Shyam Singh Chandel, Hasmat Malik, Majed A. Alotaibi, and Taha Selim Ustun. 2022. "A Novel Metaheuristic Approach for Solar Photovoltaic Parameter Extraction Using Manufacturer Data" Photonics 9, no. 11: 858. https://doi.org/10.3390/photonics9110858
APA StyleTajjour, S., Chandel, S. S., Malik, H., Alotaibi, M. A., & Ustun, T. S. (2022). A Novel Metaheuristic Approach for Solar Photovoltaic Parameter Extraction Using Manufacturer Data. Photonics, 9(11), 858. https://doi.org/10.3390/photonics9110858