Utilizing a Tunable Delay Line Interferometer to Improve the Sensing Accuracy of an FBG Sensor System
Abstract
:1. Introduction
- Our proposed system is tunable according to the tunability of the TDI;
- Compared with other systems, the proposed system is cost-effective because interrogation of FBG reflection spectra requires only the OPM and no other expensive equipment;
- Since the interrogation of the system and the measurement of various parameters can be performed by the TDI and OPM in the sensing center or the central office, the proposed system is portable.
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramakrishnan, M.; Rajan, G.; Semenova, Y.; Farrell, G. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials. Sensors 2016, 16, 90. [Google Scholar] [CrossRef] [Green Version]
- Chiu, P.H.; Lin, Y.S.; Manie, Y.C.; Li, J.W.; Lin, J.H.; Peng, P.C. Intensity and Wavelength-Division Multiplexing Fiber Sensor Interrogation Using a Combination of Autoencoder Pre-Trained Convolution Neural Network and Differential Evolution Algorithm. IEEE Photonics J. 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Hayle, S.T.; Manie, Y.C.; Yao, C.K.; Yeh, T.Y.; Yu, C.H.; Peng, P.C. Hybrid of Free Space Optics Communication and Sensor System Using IWDM Technique. J. Light. Technol. 2022, 40, 5862–5869. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, Y.; Hoehler, M.S.; Chen, G. Review of Fiber Optic Sensors for Structural Fire Engineering. Sensors 2019, 19, 877. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Dutta, S.; Kurup, P.; Yu, T.; Wang, X. A Review of Railway Infrastructure Monitoring Using Fiber Optic Sensors. Sens. Actuators A Phys. 2020, 303, 111728. [Google Scholar] [CrossRef]
- Eftimov, T.A.; Dyankov, G.L.; Kolev, P.; Vladev, V.P. A Simple Fiber Optic Magnetic Field and Current Sensor with Spectral Interrogation. Opt. Commun. 2022, 527, 128930. [Google Scholar] [CrossRef]
- Tavares, C.; Domingues, M.F.; Paixão, T.; Alberto, N.; Silva, H.; Antunes, P. Wheelchair pressure ulcer prevention using FBG based sensing devices. Sensors 2019, 20, 212. [Google Scholar] [CrossRef] [Green Version]
- Rajamani, A.S.; Divagar, M.; Sai, V.V.R. Plastic Fiber Optic Sensor for Continuous Liquid Level Monitoring. Sens. Actuators A Phys. 2019, 296, 192–199. [Google Scholar] [CrossRef]
- Hill, K.O.; Meltz, G. Fiber Bragg Grating Technology Fundamentals and Overview: Fiber Gratings, Photosensitivity, and Poling. J. Light. Technol. 1997, 15, 1263–1276. [Google Scholar] [CrossRef] [Green Version]
- Lukosz, W.; Tiefenthaler, K. Sensitivity of Grating Couplers as Integrated-Optical Chemical Sensors. J. Opt. Soc. Am. B 1989, 6, 209–220. [Google Scholar] [CrossRef]
- Hong, C.Y.; Zhang, Y.F.; Zhang, M.X.; Leung, L.M.G.; Liu, L.Q. Application of FBG Sensors for Geotechnical Health Monitoring, a Review of Sensor Design, Implementation Methods and Packaging Techniques. Sens. Actuators A Phys. 2016, 244, 184–197. [Google Scholar] [CrossRef]
- Chen, J.; Liu, B.; Zhang, H. Review of Fiber Bragg Grating Sensor Technology. Front. Optoelectron. China 2011, 4, 204–212. [Google Scholar] [CrossRef]
- Mieloszyk, M.; Ostachowicz, W. An Application of Structural Health Monitoring System Based on FBG Sensors to Offshore Wind Turbine Support Structure Model. Mar. Struct. 2017, 51, 65–86. [Google Scholar] [CrossRef]
- Kaur, G.; Kaler, R.S. Investigate the Optical FBG Sensor to Monitor Displacement and Vibration in Civil Structure. Opt. Quantum. Electron. 2022, 54, 121. [Google Scholar] [CrossRef]
- Min, R.; Liu, Z.; Pereira, L.; Yang, C.; Sui, Q.; Marques, C. Optical Fiber Sensing for Marine Environment and Marine Structural Health Monitoring: A Review. Opt. Laser Technol. 2021, 140, 107082. [Google Scholar] [CrossRef]
- Riza, M.A.; Go, Y.I.; Harun, S.W.; Maier, R.R.J. FBG Sensors for Environmental and Biochemical Applications—A Review. IEEE Sens. J. 2020, 20, 7614–7627. [Google Scholar] [CrossRef]
- Annunziato, A.; Anelli, F.; Gates, J.; Holmes, C.; Prudenzano, F. Design of Polarization-Maintaining FBGs Using Polyimide Films to Improve Strain-Temperature Sensing in CFRP Laminates. IEEE Photonics J. 2021, 13, 7100315. [Google Scholar] [CrossRef]
- Schmauss, B.; Hessler, S.; Belle, S.; Rosenberger, M.; Hellmann, R. Compressive and Tensile Strain Sensing Using a Polymer Planar Bragg Grating. Opt. Express 2014, 22, 5483–5490. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Marques, C.; Ribeiro, M.R.N.; Pontes, M.J.; Frizera, A. FBG-Embedded 3-D Printed ABS Sensing Pads: The Impact of Infill Density on Sensitivity and Dynamic Range in Force Sensors. IEEE Sens. J. 2018, 18, 8381–8388. [Google Scholar] [CrossRef]
- Potts, C.; Allen, T.W.; Azar, A.; Melnyk, A.; Dennison, C.R.; DeCorby, R.G. Wavelength Interrogation of Fiber Bragg Grating Sensors Using Tapered Hollow Bragg Waveguides. Opt. Lett. 2014, 39, 5941–5944. [Google Scholar] [CrossRef]
- Fernández, M.P.; Bulus Rossini, L.A.; Cruz, J.L.; Andrés, M.V.; Costanzo Caso, P.A. High-Speed and High-Resolution Interrogation of FBG Sensors Using Wavelength-to-Time Mapping and Gaussian Filters. Opt. Express 2019, 27, 36815–36823. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yao, Y.; Niu, H.; Zha, H.; Zhang, L.; Tian, Z.; Chen, N.K.; Ren, Y. Peak wavelength and bandwidth tunable fiber Bragg grating notch filter induced by femtosecond laser point by point inscription. Opt. Commun. 2022, 521, 128583. [Google Scholar] [CrossRef]
- Kim, D.K.; Kim, J.; Lee, S.-L.; Choi, S.; Jeong, S.J.; Kim, M.S.; Lee, Y.W. Simultaneous Measurement of Strain and Temperature Using Long-Period Fiber Grating Written on Polarization-Maintaining Photonic Crystal Fiber. J. Nanosci. Nanotechnol. 2020, 20, 257–262. [Google Scholar] [CrossRef]
- Yang, G.; Guo, J.; Xu, G.; Lv, L.; Tu, G.; Xia, L. A Novel Fiber Bragg Grating Wavelength Demodulation System Based on F-P Etalon. In Proceedings of the Optoelectronic Devices and Integration V, SPIE, Beijing, China, 9–11 October 2014; Volume 9270, p. 92700V. [Google Scholar]
- Das, B.; Chandra, V. Fiber-MZI-Based FBG Sensor Interrogation: Comparative Study with a CCD Spectrometer. Appl. Opt. 2016, 55, 8287–8292. [Google Scholar] [CrossRef] [PubMed]
- Díaz, C.A.; Marques, C.A.; Domingues, M.F.F.; Ribeiro, M.R.; Frizera-Neto, A.; Pontes, M.J.; André, P.S.; Antunes, P.F. A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers. Measurement 2018, 124, 486–493. [Google Scholar] [CrossRef]
- Wei, L.; Khattak, A.; Martz, C.; Zhou, D.P. Tunable multimode fiber based filter and its application in cost-effective interrogation of fiber-optic temperature sensors. IEEE Photonics J. 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Su, H.; Huang, X.G. A Novel Fiber Bragg Grating Interrogating Sensor System Based on AWG Demultiplexing. Opt. Commun. 2007, 275, 196–200. [Google Scholar] [CrossRef]
- Chen, S.; Yao, F.; Ren, S.; Wang, G.; Huang, M. Cost-effective improvement of the performance of AWG-based FBG wavelength interrogation via a cascaded neural network. Opt. Express 2022, 30, 7647–7663. [Google Scholar] [CrossRef]
- Brunetti, G.; Dell’olio, F.; Conteduca, D.; Armenise, M.N.; Ciminelli, C. Ultra-Compact Tuneable Notch Filter Using Silicon Photonic Crystal Ring Resonator. J. Light. Technol. 2019, 37, 2970–2980. [Google Scholar] [CrossRef]
- Majumder, M.; Gangopadhyay, T.K.; Chakraborty, A.K.; Dasgupta, K.; Bhattacharya, D.K. Fibre Bragg Gratings in Structural Health Monitoring-Present Status and Applications. Sens. Actuators A Phys. 2008, 147, 150–164. [Google Scholar] [CrossRef]
- Li, R.; Chen, Y.; Tan, Y.; Zhou, Z.; Li, T.; Mao, J. Sensitivity Enhancement of FBG-Based Strain Sensor. Sensors 2018, 18, 1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miliou, A. In-Fiber Interferometric-Based Sensors: Overview and Recent Advances. Photonics 2021, 8, 265. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, L.; Hao, S.; Tang, J. Advanced Fiber Sensors Based on the Vernier Effect. Sensors 2022, 22, 2694. [Google Scholar] [CrossRef] [PubMed]
- Manie, Y.C.; Yao, C.-K.; Yeh, T.-Y.; Teng, Y.-C.; Peng, P.-C. Laser based optical wireless communications for the Internet of Things (IoT) Application. IEEE Internet Things J. 2022. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dejband, E.; Yao, C.-K.; Manie, Y.C.; Huang, P.-Y.; Lee, H.-K.; Tan, T.-H.; Peng, P.-C. Utilizing a Tunable Delay Line Interferometer to Improve the Sensing Accuracy of an FBG Sensor System. Photonics 2022, 9, 869. https://doi.org/10.3390/photonics9110869
Dejband E, Yao C-K, Manie YC, Huang P-Y, Lee H-K, Tan T-H, Peng P-C. Utilizing a Tunable Delay Line Interferometer to Improve the Sensing Accuracy of an FBG Sensor System. Photonics. 2022; 9(11):869. https://doi.org/10.3390/photonics9110869
Chicago/Turabian StyleDejband, Erfan, Cheng-Kai Yao, Yibeltal Chanie Manie, Po-Yang Huang, Hao-Kuan Lee, Tan-Hsu Tan, and Peng-Chun Peng. 2022. "Utilizing a Tunable Delay Line Interferometer to Improve the Sensing Accuracy of an FBG Sensor System" Photonics 9, no. 11: 869. https://doi.org/10.3390/photonics9110869
APA StyleDejband, E., Yao, C. -K., Manie, Y. C., Huang, P. -Y., Lee, H. -K., Tan, T. -H., & Peng, P. -C. (2022). Utilizing a Tunable Delay Line Interferometer to Improve the Sensing Accuracy of an FBG Sensor System. Photonics, 9(11), 869. https://doi.org/10.3390/photonics9110869