Experimental Detection of Initial System–Environment Entanglement in Open Systems
Abstract
:1. Introduction
2. Detecting Initial Entanglement in Open Systems
3. Experimental Demonstration
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Werner, R.F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 1989, 40, 4277–4281. [Google Scholar] [CrossRef] [PubMed]
- Peres, A. Separability Criterion for Density Matrices. Phys. Rev. Lett. 1996, 77, 1413–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: Necessary and sufficient conditions. Phys. Lett. A 1996, 223, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Terhal, B.M. Bell inequalities and the separability criterion. Phys. Lett. A 2000, 271, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Terhal, B.M. A family of indecomposable positive linear maps based on entangled quantum states. Linear Algebra Appl. 2001, 323, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Terhal, B.M. Detecting quantum entanglement. Theor. Comput. Sci. 2002, 287, 313–335. [Google Scholar] [CrossRef] [Green Version]
- Tóth, G.; Gühne, O. Detecting Genuine Multipartite Entanglement with Two Local Measurements. Phys. Rev. Lett. 2005, 94, 060501. [Google Scholar] [CrossRef] [Green Version]
- Bovino, F.A.; Castagnoli, G.; Ekert, A.; Horodecki, P.; Alves, C.M.; Sergienko, A.V. Direct Measurement of Nonlinear Properties of Bipartite Quantum States. Phys. Rev. Lett. 2005, 95, 240407. [Google Scholar] [CrossRef] [Green Version]
- Gühne, O.; Lütkenhaus, N. Nonlinear Entanglement Witnesses. Phys. Rev. Lett. 2006, 96, 170502. [Google Scholar] [CrossRef] [Green Version]
- Augusiak, R.; Demianowicz, M.; Horodecki, P. Universal observable detecting all two-qubit entanglement and determinant-based separability tests. Phys. Rev. A 2008, 77, 030301. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, C.; Wang, K.; Xiao, L.; Xue, P. Experimental witnessing for entangled states with limited local measurements. Photon. Res. 2022, 10, 2047–2055. [Google Scholar] [CrossRef]
- Rudolph, O. On the cross norm criterion for separability. J. Phys. A Math. Gen. 2003, 36, 5825. [Google Scholar] [CrossRef]
- Chen, K.; Wu, L.A. A matrix realignment method for recognizing entanglement. arXiv 2002, arXiv:quant-ph/0205017. [Google Scholar] [CrossRef]
- Maccone, L.; Bruß, D.; Macchiavello, C. Complementarity and Correlations. Phys. Rev. Lett. 2015, 114, 130401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, X.F.; Vamivakas, A.N.; Eberly, J.H. Entanglement limits duality and vice versa. Optica 2018, 5, 942–947. [Google Scholar] [CrossRef] [Green Version]
- Spengler, C.; Huber, M.; Brierley, S.; Adaktylos, T.; Hiesmayr, B.C. Entanglement detection via mutually unbiased bases. Phys. Rev. A 2012, 86, 022311. [Google Scholar] [CrossRef] [Green Version]
- Bian, Z.H.; Wu, H. Experimental Certification of Quantum Entanglement Based on the Classical Complementary Correlations of Two-Qubit States. Photonics 2021, 8, 525. [Google Scholar] [CrossRef]
- Viola, L.; Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 1998, 58, 2733–2744. [Google Scholar] [CrossRef] [Green Version]
- Modi, K. Operational approach to open dynamics and quantifying initial correlations. Sci. Rep. 2012, 2, 581. [Google Scholar] [CrossRef] [Green Version]
- Ringbauer, M.; Wood, C.J.; Modi, K.; Gilchrist, A.; White, A.G.; Fedrizzi, A. Characterizing Quantum Dynamics with Initial System-Environment Correlations. Phys. Rev. Lett. 2015, 114, 090402. [Google Scholar] [CrossRef]
- Laine, E.M.; Piilo, J.; Breuer, H.P. Witness for initial system-environment correlations in open-system dynamics. Europhys. Lett. 2011, 92, 60010. [Google Scholar] [CrossRef] [Green Version]
- Smirne, A.; Breuer, H.P.; Piilo, J.; Vacchini, B. Initial correlations in open-systems dynamics: The Jaynes-Cummings model. Phys. Rev. A 2010, 82, 062114. [Google Scholar] [CrossRef] [Green Version]
- Gessner, M.; Breuer, H.P. Detecting Nonclassical System-Environment Correlations by Local Operations. Phys. Rev. Lett. 2011, 107, 180402. [Google Scholar] [CrossRef] [PubMed]
- Dajka, J.; Łuczka, J.; Hänggi, P. Distance between quantum states in the presence of initial qubit-environment correlations: A comparative study. Phys. Rev. A 2011, 84, 032120. [Google Scholar] [CrossRef] [Green Version]
- Gessner, M.; Breuer, H.P. Local witness for bipartite quantum discord. Phys. Rev. A 2013, 87, 042107. [Google Scholar] [CrossRef] [Green Version]
- Wißmann, S.; Leggio, B.; Breuer, H.P. Detecting initial system-environment correlations: Performance of various distance measures for quantum states. Phys. Rev. A 2013, 88, 022108. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X. Determining the mixed high-dimensional Bell state of a photon pair through the measurement of a single photon. Phys. Rev. A 2021, 103, 032437. [Google Scholar] [CrossRef]
- Li, C.F.; Tang, J.S.; Li, Y.L.; Guo, G.C. Experimentally witnessing the initial correlation between an open quantum system and its environment. Phys. Rev. A 2011, 83, 064102. [Google Scholar] [CrossRef]
- Smirne, A.; Brivio, D.; Cialdi, S.; Vacchini, B.; Paris, M.G.A. Experimental investigation of initial system-environment correlations via trace-distance evolution. Phys. Rev. A 2011, 84, 032112. [Google Scholar] [CrossRef] [Green Version]
- Gessner, M.; Ramm, M.; Pruttivarasin, T.; Buchleitner, A.; Breuer, H.P.; Häffner, H. Local detection of quantum correlations with a single trapped ion. Nat. Phys. 2014, 10, 105–109. [Google Scholar] [CrossRef]
- Chitambar, E.; Abu-Nada, A.; Ceballos, R.; Byrd, M. Restrictions on initial system-environment correlations based on the dynamics of an open quantum system. Phys. Rev. A 2015, 92, 052110. [Google Scholar] [CrossRef]
- Hagen, S.; Byrd, M. Detecting initial system-environment correlations in open systems. Phys. Rev. A 2021, 104, 042406. [Google Scholar] [CrossRef]
- Jozsa, R. Fidelity for Mixed Quantum States. J. Mod. Opt. 1994, 41, 2315–2323. [Google Scholar] [CrossRef]
- Hill, S.A.; Wootters, W.K. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett. 1997, 78, 5022–5025. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, G.; Qu, D.; Xiao, L.; Xue, P. Experimental Detection of Initial System–Environment Entanglement in Open Systems. Photonics 2022, 9, 883. https://doi.org/10.3390/photonics9110883
Zhu G, Qu D, Xiao L, Xue P. Experimental Detection of Initial System–Environment Entanglement in Open Systems. Photonics. 2022; 9(11):883. https://doi.org/10.3390/photonics9110883
Chicago/Turabian StyleZhu, Gaoyan, Dengke Qu, Lei Xiao, and Peng Xue. 2022. "Experimental Detection of Initial System–Environment Entanglement in Open Systems" Photonics 9, no. 11: 883. https://doi.org/10.3390/photonics9110883
APA StyleZhu, G., Qu, D., Xiao, L., & Xue, P. (2022). Experimental Detection of Initial System–Environment Entanglement in Open Systems. Photonics, 9(11), 883. https://doi.org/10.3390/photonics9110883