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Abstract: An integrated direct-reading spectrometer scheme using seven concave gratings is proposed.
At present, the optical design simulation has been completed, and the subsequent physical design
may be carried out according to the simulation results. Ray-tracing software (Zemax) is used to
divide the spectrum on the grating into seven bands, and an area array detector is used to receive
the spectral signals simultaneously, which reduces the volume of the spectrometer and improves
the spectral consistency. Using this method, a spectrometer covering 230–440 nm is designed, and
the spectral resolution of the center wavelength corresponding to the seven grating windows of
230–260 nm, 260–290 nm, 290–320 nm, 320–350 nm, 350–380 nm, 380–410 nm, and 410–440 nm can
reach 0.0974 nm, 0.0652 nm, 0.0361 nm, 0.0157 nm, 0.0838 nm, 0.0872 nm, and 0.1471 nm.

Keywords: Paschen–Runge spectrometer; optical design; multigrating

1. Introduction

Direct-reading spectrometers are widely used in modern scientific research and indus-
trial production, playing an important role in material identification. With the advancement
of the industry and changes in application scenarios, new requirements have been placed
on the spectrometer. Reducing the size and improving integration have become the main
development directions of the direct-reading spectrometer.

The direct-reading spectrometer is usually used for spectral analysis to detect different
substances. In the 1850s, Kirchhoff and Bunsen designed and manufactured a relatively
complete set of spectroscopic devices to research the characteristic spectra of different
metal substances, which was the first practical spectrometer in the world [1]. By the
1880s, Henry A. Rowland had invented the concave grating, which has self-focusing
characteristics and requires no additional collimating or focusing elements [2]. Then, in the
1940s, the first direct-reading spectrometer was developed and has been deeply researched
and applied in many directions [3]. The traditional direct-reading spectrometer usually
adopts the Paschen–Runge structure; the main components are concave grating with large
curvature and a large amount of groove density, and multiple detectors are distributed on
the Rowland circle [4–6]. In order to achieve high-resolution and wide waveband detection,
long focal lengths and multiple linear detectors are usually used, resulting in a larger
volume of the direct-reading spectrometer, which is inconvenient for on-site detection.
However, it is difficult to achieve a wide-working waveband, high resolution, and high
speed simultaneously in a small-volume spectrometer [7,8]. A possible solution to reduce
the volume is using an adjustable mechanical structure; however, it is hard to quickly collect
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multiple sets of spectral data during spectrum acquisition, and it is difficult to control the
accuracy during the adjustment process and the stability during long-term use [9,10].

In the Czerny–Turner optical structure, researchers have proposed the idea of folding
optical paths with integrated gratings. For example, Zhang et al. proposed the use of a
five-grating integrated design and optimized the spectrometer in the wavelength range of
200–1000 nm [11]. Jiang et al. designed a high-resolution spectrometer with a wavelength
range of 170–600 nm using 19 integrated gratings [12]. Tu et al. designed a coma-free
ultrahigh-resolution spectrometer using 44 subgratings [13]. To best of our knowledge, no
spectrometer with an integrated grating structure is used in the Paschen–Runge structure
optical system.

With the rapid development of large-size area array detectors in recent years, an
improved integrated grating spectrometer structure is proposed in this study. The struc-
ture adopts multiple concave subgratings and an area array detector. This design scheme
reduces the volume of the traditional Paschen–Runge structure and facilitates on-site detec-
tion. At the same time, using an area array detector realizes the simultaneous acquisition
of the spectrum and improves the consistency of the spectrum. The key parameters of area
array detector imaging can be controlled by the angle of each subgrating on the merid-
ional and sagittal planes. The optical system design and simulation analysis results are
presented below.

2. Traditional Paschen–Runge Spectrometer

In optical systems using gratings as dispersive elements, when the light is incident
on the grating at an angle α and then diffracted at an angle θ, the incident angle and the
diffraction angle satisfy the grating equation:

d(sin α ± sin θ) = mλ (1)

where d is the grating constant, describing the distance between two adjacent grooves
on the grating; and m is the diffraction order. In this design, the incident light and the
diffracted light are on the same side of the grating normal, so the sign is positive; otherwise,
the sign is negative. The entire wavelength range adopts first-order diffraction (m = 1), and
Equation (1) can be rewritten as:

sin θ =
λ

d
− sin α (2)

When the grating constant d and the incident angle α are determined, the diffracted
spectral lines will be distributed in a wavelength window corresponding to the diffraction
angles ranging from θ1 to θ2, at this time:

∆ sin θ = sin θ2 − sin θ1 = (λ2 − λ1)/d =
∆λ

d
, (3)

As shown in Figure 1, the Paschen–Runge structure direct-reading spectrometer is
mainly composed of a slit, a lens, a concave grating, and multiple line array detectors, all of
which are located on the Rowland circle. It can be seen that the grating has a certain angle
on the meridian plane, which reduces astigmatism in the wavelength range of 200–450 nm.

To precisely detect more element species (including some trace elements), the system is
required to have a high spectral resolution, usually with a focal length of more than 500 mm
and a grating of more than 2400 g/mm. In addition, the image plane of the optical system
is located on the Rowland circle, and it is necessary to distribute enough detectors on the
image plane to ensure the spectral resolution capability of the whole waveband. Therefore,
these optics require high positioning accuracy, and the system requires high mechanical
and thermal stability. On the other hand, the characteristic spectrum of some elements is
located in the ultraviolet waveband, or even in the vacuum ultraviolet band (UVD). Since
common detectors have a low spectral response to the ultraviolet band, the energy cannot
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meet the requirements, and the surface of the detector that accepts this waveband needs to
be coated with an ultraviolet enhancement film. To improve the spectral response of this
waveband, the entire optical chamber needs to be kept in a vacuum state or continuously
flushed with inert gas during use to prevent the vacuum ultraviolet waveband from being
absorbed by oxygen.
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Figure 1. Traditional Paschen–Runge structure direct-reading spectrometer schematic.

3. Improved Integrated Paschen–Runge Spectrometer

The focus of this paper is the integration of grating, aiming to reduce the volume and
size, ignoring the lens, mainly for the optical path model starting from the slit. As shown
in Figure 2, the improved integrated direct-reading spectrometer designed is mainly com-
posed of a slit, seven concave gratings, and an area array detector in this study. The optical
path of the entire system is folded seven times on the sagittal plane, and a large-size area
array detector is used to collect spectral information simultaneously, which improves the
consistency of the spectrum. In comprehensive consideration of the wavelength range, size,
and resolution of the spectrometer system, we choose seven concave subgratings and divide
the wavelength range into seven groups. The central wavelengths of these subwavelength
windows are 245 nm (230–260 nm), 275 nm (260–290 nm), 305 nm (290–320 nm), 335 nm
(320–350 nm), 365 nm (350–380 nm), 395 nm (380–410 nm), and 425 nm (410–440 nm).
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According to the optical simulation results, the spot spacing of the edge grating among
the seven gratings and the spot spacing corresponding to the upper edge wavelength of
the same grating is about 29.8 mm × 32.3 mm. Secondly, the detector with a strong spectral
response in the required band should be selected as far as possible, and the number of
pixels of the detector should be as many as possible to meet the resolution requirements.

The pixel specification of the back-illuminated area array detector (QHY4040PRO-
BSI [14]) is 4096 × 4096, the pixel size is 9 × 9 µm, and its effective imaging area is
36.9 × 36.9 mm. The first-order spectral resolving power of the concave grating can be
given by R = λ/∆λ = N, where N is the total number of grooves on the grating. For a
typical concave grating with a groove density of 2400 g/mm and a useful width of 35 mm,
R = 42,000, the ideal wavelength resolution is about ∆λ = 0.004 nm at λ = 335 nm.

In the traditional Paschen–Runge spectrometer described in Figure 1, multiple linear
detectors are used because of the long rear focal length and wide image plane distribution
on the entire Rowland circle, which is also the main reason for the large size of the traditional
direct-reading spectrometer. In this paper, multiple gratings are integrated and distributed
on the sagittal plane. By adjusting the angle of each grating, all the spectra can be received
by a planar array detector, thus reducing the volume and improving. When the front focal
length and rear focal length remain unchanged, the size of the image plane is reduced from
197.4 mm × 28 mm to 29.8 mm × 32.3 mm, as shown in Figure 3.
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It can be seen in Figure 2, that the angles of the seven gratings on the meridional plane
and the sagittal plane are different. Each grating has a different angle on the meridian
plane so that the center wavelength of the corresponding band of each grating can be
irradiated in the middle of the grating to avoid excessive off-axis aberration introduced by
the edge wavelength. The tilt angle, curvature, and focal length of the central grating on
the meridional plane are obtained according to the traditional Paschen–Runge structural
parameter calculation method. According to Equations (1) and (3), the inclination angle of
the grating on the meridian plane is calculated and adjusted carefully to make the sum of
the incident angle and diffraction angle of the light before and after passing through the
grating the same. This ensures that the diffraction length corresponding to each grating
window remains the same on the premise of not exceeding the detector length. Since the
detector receives the diffraction spectra of seven gratings at the same time, even if the
width of each grating is set to 5 mm under the premise of ensuring the luminous flux, its
spectral width still exceeds the width of the selected detector. At the same time, the angle
of the grating on the sagittal plane has a linear relationship with the spectral width. By
carefully adjusting the tilt angle of the grating on the sagittal plane, the spectral width can
be limited to the size of the detector.
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This optical design is simulated and optimized by ray-tracing software (Zemax). All
the parameters are presented in Table 1.

Table 1. Main parameters of the optical structure.

Wavelength of
Window ∆λ

Distance from the
Slit to the Grating

f 1

Radius of
Curvature of the

Grating Rn

Angle of
Incidence in

Angle on the
Sagittal Plane βn

Distance from the
Grating to the

Detector f 2

230–260 nm

292.5 mm

381.99 mm 36.2◦ −1.45◦

398.69 mm

260–290 nm 387.74 mm 38.5◦ −1.05◦

290–320 nm 394.30 mm 40.85◦ −0.55◦

320–350 nm 401.56 mm 43.2◦ 0◦

350–380 nm 410.13 mm 45.7◦ 0.55◦

380–410 nm 419.37 mm 48.12◦ 1.05◦

410–440 nm 430.03 mm 50.7◦ 1.45◦

As shown in Figure 4, the typical Paschen–Runge structure is retained on the meridian
plane. The central grating, slit, and detector are still located on the Rowland circle, and the
system optical path is integrated by using multiple concave gratings on the sagittal plane.
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on Rowland circle.

In the design of the Paschen–Runge spectrometer, the use of concave gratings made it
unnecessary to use collimators and focusing mirrors. The main aberrations are caused by
the off-axis angle of the concave grating, where the resolution is affected by the spherical
and meridional coma aberrations, and the energy is affected by the image dispersion and
sagittal aberrations. In the actual system, the verticality of the slit mounting, the machining
accuracy, and the number of image elements of the detector also need to be considered, all
of which have an impact on the optical performance of the system.

It is most common to evaluate an optical system’s performance according to the spot
size, but in this integrated system, it is not intuitive for the method to directly observe the
spot size. As shown in Figure 5, the Y-spot size data of each grating window interval of
3 nm is taken to make a circle with its spot radius. To evaluate the overall image quality,
the spot size of the wavelength corresponding to all the grating windows is displayed
intuitively [15].
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As shown in Figure 5, the Y-spot radius corresponding to the wavelength window of
the central grating is the smallest, and the closer to the edge grating, the larger the spot size.
For a single grating wavelength window, the center wavelength spot radius is the smallest,
and the closer to the edge wavelength, the larger the spot radius, which is in line with the
actual situation.

The spectral resolution is also an important parameter index for evaluating the
spectrometer system, which is defined as the spectral bandwidth corresponding to one
pixel in the detector. The wavelength distribution corresponding to each pixel can be
obtained by convolution of the line spread function (LSF) of each pixel and a rectangular
function with a pixel width of 10 µm, and the LSF can be obtained by the ray-tracing
software. The distance along the pixel is convolved and then the corresponding convolu-
tion concerning wavelength is obtained, taking into account the grating dispersion [16].
The width of the slit is also one of the important factors affecting the resolution. The
obtained result is convolved with the slit function of 10 µm, and its expression is defined
as [17]:

f (λ) = fS(xs)⊗ fLSF(λ)⊗ fD(xd) (4)

where ⊗ represents convolution; f (λ) is the spectral line data corresponding to the wave-
length; fS(xs) and fD(xd) represent the effect functions of the slit and detector, respectively,
defining the influence of the slit module and detector module on the final detection spec-
trum; and fLSF(λ) represents the line spread function.

The obtained wavelength distribution and resolution results are shown in Figure 6.
It can be seen that the changing trend of the overall spectral resolution of the system
maintains the same trend as the spot radius data in Figure 6.
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4. Discussion

Based on the purpose of stacking gratings on the sagittal plane in the C-T structure
to improve the resolution, the gratings were divided and stacked on the sagittal plane in
the traditional Paschen–Runge direct-reading spectrometer in this paper. It can be seen
from the above experimental results that the overall size of the spectrometer was greatly
reduced on the premise that the resolution met the requirements.

According to the comprehensive comparison between Figures 5 and 6, the spot size
and resolution trends of different gratings are basically consistent. After our analysis, the
possible reasons for the asymmetry of the resolution distribution in Figure 6 are as follows:
(1) the main factors affecting the resolution are the spherical aberration and meridional
coma caused by the off-axis angle of the concave grating; (2) according to the relationship
between wavelength and resolution, d = λ/2nsinθ, when the incident angle is constant,
the wavelength is proportional to the distance between the smallest two points that can be
identified; (3) in order to make the simulation results closer to the real situation, this paper
uses the LSF, slit function, and detector function convolved for resolution evaluation. To
sum up, the inconsistent change trend of the wavelength resolution on the symmetrical
grating is caused by the comprehensive influence of multiple factors such as wavelength,
aberration, and resolution calculation method. In the future, we will conduct further
in-depth research on this. At the same time, we believe that this improved spectrometer
structure may have some reference value for optical coherence tomography [18–21]. To
further increase the band range or improve the spectral resolution, it can be achieved by
increasing the number of gratings on the sagittal plane or reducing the corresponding
spectral range of each grating.
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5. Conclusions

In this study, we proposed an integrated Paschen–Runge direct-reading spectrometer
structure that utilizes seven concave gratings to simultaneously map spectra onto an
area array detector. Using this method, we designed a spectrometer that operates in
the 230–440 nm wavelength band. The performance of the optical system is evaluated
by using the Y-spot radius and spectral resolution, respectively. The spectral resolution
of the center wavelength corresponding to the seven grating windows of 230–260 nm,
260–290 nm, 290–320 nm, 320–350 nm, 350–380 nm, 380–410 nm, and 410–440 nm can reach
0.0974 nm, 0.0652 nm, 0.0361 nm, 0.0157 nm, 0.0838 nm, 0.0872 nm, and 0.1471 nm. The
whole system has no moving mechanical parts, which increases the stability and reliability
of the system. Using an area array detector to simultaneously receive the spectral signals of
seven gratings increases the spectral consistency. We plan to build such a device in future
research. Compared with the traditional Paschen–Runge structure, the optical system is
smaller in volume and more compact in structure, which has a higher profit margin and
good field detection prospects.
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