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Abstract: X-ray diffraction microscopy (XDM) is an established lens-less imaging method extensively
practiced at synchrotrons and X-ray free-electron lasers (XFELs). XDM is broadly operated in two
different modes: scanning and non-scanning. The non-scanning mode of operation in XDM is
commonly called coherent diffraction imaging (CDI) and has been the key research direction of
many XFEL facilities. This method typically images objects smaller than the size of the illumination,
which precludes the imaging of a large group of samples physically larger than the illumination.
Furthermore, satisfying this requirement at X-ray free-electron lasers tremendously reduces the
volume of practically useful data, leading the experimental scheme to be less efficient. Such a
limitation can be circumvented by using a uniform illumination probe rather than the traditional
Gaussian-focused probe from the X-ray focusing optics. Here in this article, we report a numerical
study on the design of an optical element to generate uniform X-ray illumination and its application
to the CDI. We demonstrate the benefits of such illumination in imaging objects that are larger than
the illumination size and in improving the efficiency of the experimental scheme overall.

Keywords: X-ray microscopy; flat-top X-ray beams; X-ray free-electron lasers

1. Introduction

X-ray diffraction microscopy is an established lens-less imaging method that has
evolved significantly over the past two decades [1–5]. The method has become a standard
microscopic tool for the two-dimensional and three-dimensional nano-scale imaging of ob-
jects at synchrotrons. The extension of the method with electrons [6] and visible lights [7–9]
has also been demonstrated on a few occasions. With the advent of X-ray free-electron lasers
(XFELs), the method has received significant attention, and several XFELs have included
the development of this method as one of their main research programs. The objective of
such programs is to perform radiation damage-free imaging of cells to molecules, exploiting
the concept behind the “diffraction before destruction” [10]. In a typical XDM experiment,
a coherent illumination shines the sample, and a speckled diffraction pattern is recorded
with a two-dimensional detector. An image of the specimen is obtained after retrieving the
phase by using standard phase-retrieval algorithms [11–13] where the measured diffraction
is taken as the input. In one of the variants of XDM, which operates in a non-scanning
mode, the sample dimensions should be smaller than the illumination size in order to
satisfy the oversampling requirement in practice. This method is widely called coherent
diffraction imaging (CDI).

XDM methods to image samples larger than the illumination size do exist and are
broadly known in the community by the name of Ptychography [14–20]. In these methods,
the illumination raster scans the extended sample with each consecutive scan overlapping
by a significant fraction, and a diffraction pattern is recorded at each scan point. The image
of the extended sample is then obtained using the iterative algorithm. The limitation of this
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method is that it is not the method of choice for the single-shot experiments practiced at
XFELs where the sample is completely damaged after the X-ray illuminates the sample.

The imaging of an extended sample by coherent diffraction imaging in a non-scanning
mode has been demonstrated on a few occasions [21,22]. The solutions presented are not
optimal as they either need the information of the illuminating wavefront or need the
knowledge of the intensity distribution to obtain the intrinsic density distribution of the
sample. Additionally, approaches such as the coherent modulation of the exit wave and
randomized probe imaging have also been demonstrated to image extended objects in the
non-scanning mode. However, these methods need the information of either the modulator
or the probe beforehand for carrying out any successful reconstruction of the image [23,24].
These problems can be resolved if uniform illumination can be used for coherent diffraction
imaging. Additionally, the low hit rates in the current XFEL experiments can be overcome
with such illumination and the entire measurement scheme can be made more efficient.
This article aims at exploring this possibility through numerical simulations.

Attempts to generate uniform X-ray illumination have previously been demonstrated
by the use of the diffractive optical element [25,26]. However, in the majority of the previous
reports, only uniform intensities over the illumination were obtained. For applications
aiming at coherent diffraction imaging, both the intensity distribution and the phase
distribution need to be uniform. Diffractive optical elements capable of generating such
illumination with a uniform amplitude and phase have recently been demonstrated in
the visible-light regime [27]. Here in this report, we extend the use of the knowledge
existing in the visible-light regime and design an optical element to generate illumination
with a uniform X-ray intensity and phase. Such beams are then applied for coherent
diffraction imaging to show their benefits in imaging extended objects and also to improve
the efficiency of the experiments.

2. Experimental Setup and Design of the Phase Grating

A schematic for the proposed experiment to transform the Gaussian beam into a
top-hat beam with a uniform phase and its application to diffraction imaging is shown in
Figure 1. The schematic is designed assuming the input to the optical element is a Gaussian
beam. All the simulation results presented in this article are based on the above schematics.
Furthermore, we assume that the incident illumination has full spatial coherence. We also
assume that the incident beam is fully monochromatic. In brief, a Gaussian beam passes
through the optical element. At the Fresnel regime of the optical element, a top-hat beam is
generated. Such a top-hat beam illuminates the sample, and a speckled diffraction pattern
in the Fraunhoffer regime is recorded by a two-dimensional detector.
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2.1. Design of the Optical Element

The design of the optical element is one of the key results presented in this article. In
this section, we describe the procedure for obtaining such an optical element. We have
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used the modified Gerchberg–Saxton (GS) algorithm as proposed by Reddy et al. [27]. The
modified GS algorithm has constant amplitude as a constraint in the input space, which
means that only phase of the new function from each iteration in the input space is updated
and the amplitude is retained. The proposed algorithm has been adapted to the X-ray
wavelengths (1.24 Å) and used for designing the optical element. In brief, the algorithm
takes an input beam g with Gaussian distribution and random phase. The input beam
is then Fresnel propagated to a distance of 10−2 m to obtain a new field G. At this plane,
the amplitude of G is replaced by the amplitude of the desired top-hat beam while the
phase is retained. This new distribution G’, after spatial filtering, is back-propagated to the
plane of the optical element using inverse Fresnel propagation to obtain g’. This process is
continued until an optical element necessary for obtaining illumination with uniform phase
and intensity is obtained. The convergence of the algorithm was monitored by a root mean
square error (RMSE) as defined in Equation (1). For different trials we have performed
during the simulation, the convergence is confirmed after the RMSE error reaches a value
of 10−8, which on an average would take ~5000 iterations. A schematic representation of
the algorithm used for designing the optical element is shown in Figure 2.

RMSE =

√
∑
(
|G| −

∣∣G′∣∣)2

∑|G|
(1)
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2.2. Description of the Optical Grating

With the algorithm defined in the previous section, we have designed the optical
element necessary to convert the Gaussian X-ray beam to a top-hat X-ray beam with
uniform phases. The summary of the input parameters used for the simulation has been
presented in Table 1. The parameters are taken from the standard experiments being
performed at the XFELs.

Table 1. Summary of parameters used for simulation.

Parameter Value

X-ray wavelength 1.24 Å
Propagation distance 10−2 m

Input beam size HWHM 1 mm
Top-hat beam size (diameter) 10−6 m

The results obtained from the simulation have been summarized in Figure 3. The
input beam with Gaussian intensity distribution is shown in Figure 3a. The output beam
with the uniform intensity is shown in Figure 3b. The output top-hat beam showed no
higher-order diffraction intensities. The phase distribution of the top-hat beam is shown in
Figure 3c.
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top-hat beam.

The targeted size of the top-hat beam is 1 µm. From the simulation, the phase element
necessary to generate the illumination with uniform phase and intensity has dimensions of
1.24 mm by 1.24 mm. The optical element is comprised of concentric rings with a width
of a maximum of ~57 µm. At the plane of the phase element, each pixel corresponds
to ~1.24 µm. The phase distribution in the optical element simulated for the conditions
described in Table 1 is shown in Figure 4a. A line plot of the phase element is shown
in Figure 4b. From the phase profile of the phase element, the phase difference between
the maxima and the minima of the concentric rings ranges up to 2π and is not uniform.
Although they are comprised of concentric rings, they should not be confused with the
traditional zone plates. Unlike zone plates, the phase element necessary to produce the
top-hat beam is not a periodic square function with varying widths. Because the phase is
linearly dependent on the thickness of the material used for fabricating the phase element,
such a phase element can be fabricated the same way as the blazed diffractive elements
are, but this can be challenging. Alternatively, such phase distributions can also potentially
be generated using X-ray wavefront shaping elements [28]. The smallest feature size that
needs to be patterned is 4.96 µm. The fabrication of such a transmission phase element
can be performed by making patterns of silicon on the silicon nitride membrane. Based on
the necessary phase shift to be introduced, the thickness of the silicon can be calculated
with t = ϕλ/2δπ, where t is the thickness, ϕ is the phase shift, λ is the wavelength, δ is the
real part of the refractive index. For silicon, δ has a value of ~4.31·10−6 at ~10 keV. Because
the maximum phase shift necessary for the proposed phase element is 2π, the maximum
thickness of silicon to be deposited is ~28.77 µm. At 10 keV, approximately 19% of the total
flux is absorbed.
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We also performed a simulation to test the manufacture tolerance of the optical element.
In the simulations, we observed that the addition of a random phase noise equivalent
to ±5 nm roughness maintained the uniform intensities and phase in the illumination.
Figure 5 shows the top-hat beam obtained after adding ±5 nm to the phase element shown
in Figure 4a.
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3. Coherent Diffraction Imaging of Extended Objects

Illumination with a uniform phase and intensity can find practical applications in
coherent diffraction imaging. As discussed in the introduction, it can be used in the imaging
of extended objects. To verify this, we have performed a numerical simulation. We used
an exemplary “Lena” image, as shown in Figure 6a, converted from RGB to grayscale.
Post conversion to grayscale, the intensity distribution in the image was converted to
phase values ranging from 0 to 2π. The image dimensions are reshaped in order to make
it larger than that of the illumination. For both the Gaussian and the top-hat beam, the
central part of the sample was illuminated by the probes. The exit waves obtained after
the interaction of the sample by the Gaussian and top-hat illuminations are shown in
Figure 6b,e, respectively. The diffraction patterns shown in Figure 6d,g were obtained by
taking the modulus square of the Fourier transform of the exit wave. A visual comparison
of the two diffraction patterns shows no effect of any sort of higher-order diffraction rings
in the top-hat beam. These diffraction patterns were then used as the input for the phase-
retrieval algorithm. In this study, we have used the shrinkwrap hybrid–input–output (HIO)
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algorithm to perform all the reconstructions. The choice of the shrinkwrap HIO is merely
to make the method work without any prior information on the beam dimension or profile.
A detailed description of the algorithm can be found elsewhere [12,29]. A comparison of
the reconstruction using the Gaussian beam and the top-hat beam is shown in Figure 6c,f,
respectively. The reconstructions presented are after the 500 iterations of the shrinkwrap
HIO. From the images, it can be observed that the fidelity of the reconstructions made from
the top-hat beam is much higher than those reconstructed from the Gaussian beam.
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Figure 6. (a) Lena image as the test specimen for simulation; (b) exit wave from Gaussian illumination;
(c) reconstruction using Gaussian illumination; (d) diffraction pattern from (b); (e) exit wave from
top-hat illumination; (f) reconstruction using top-hat illumination; and (g) diffraction pattern from (e).

4. A Study of the Hit-Rate Improvement with the Top-Hat Beam

The hit rate in a typical XFEL CDI experiment is defined as the ratio of any hit on the
sample by the X-ray beam to the total number of frames collected during the experiment.
However, a practical fact is that not all the collected diffraction patterns are reconstructible.
The ones obtained by the tail of the beam hitting the samples or by the non-planar region of
the wavefront lead to a poor or even failed reconstruction. Moreover, the scattering pattern
from the sample molecule depends on the position of the beam hitting the sample [30].
Therefore, the real volume of practically useful data is much less than that defined by the
hit rates. This section presents the impact of the beam profile in increasing the volume of
the reconstructible data.

In order to study whether top-hat beams provide superior hit rates as compared to
the Gaussian probe, in terms that they can provide a larger volume of practically useful
data, we have carried out simulations with a test specimen. Our specimen consists of
the two-dimensional random distribution of particles, as shown in Figure 7a. To see the
impact of the beam profile on the volume of useful data, we have generated 100 images
with random particles, with two subgroups, one containing only individual particles in
the beam and the other containing multiple particles in the beam, which resembles the
experimental conditions. Such test specimens were generated by varying the number
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(density) of particles in Figure 7a. The size of each particle in the test specimen is ~500 nm.
Because the FWHM of the top-hat and the Gaussian beams were simulated to be 1 µm, we
confirm that single particles and multiple particles were hit for the cases defined above.

Photonics 2022, 9, x FOR PEER REVIEW 7 of 10 
 

 

4. A Study of the Hit-Rate Improvement with the Top-Hat Beam 
The hit rate in a typical XFEL CDI experiment is defined as the ratio of any hit on the 

sample by the X-ray beam to the total number of frames collected during the experiment. 
However, a practical fact is that not all the collected diffraction patterns are reconstructi-
ble. The ones obtained by the tail of the beam hitting the samples or by the non-planar 
region of the wavefront lead to a poor or even failed reconstruction. Moreover, the scat-
tering pattern from the sample molecule depends on the position of the beam hitting the 
sample [30]. Therefore, the real volume of practically useful data is much less than that 
defined by the hit rates. This section presents the impact of the beam profile in increasing 
the volume of the reconstructible data. 

In order to study whether top-hat beams provide superior hit rates as compared to 
the Gaussian probe, in terms that they can provide a larger volume of practically useful 
data, we have carried out simulations with a test specimen. Our specimen consists of the 
two-dimensional random distribution of particles, as shown in Figure 7a. To see the im-
pact of the beam profile on the volume of useful data, we have generated 100 images with 
random particles, with two subgroups, one containing only individual particles in the 
beam and the other containing multiple particles in the beam, which resembles the exper-
imental conditions. Such test specimens were generated by varying the number (density) 
of particles in Figure 7a. The size of each particle in the test specimen is ~500 nm. Because 
the FWHM of the top-hat and the Gaussian beams were simulated to be 1 µm, we confirm 
that single particles and multiple particles were hit for the cases defined above. 

 
Figure 7. (a) Test sample with a random distribution of objects; (b) an instance of the test specimen 
with a single object; (c) reconstruction with a top-hat beam; (d) reconstruction with a Gaussian beam; 
(e) an instance of the test specimen with multiple objects; (f) reconstruction with a top-hat beam; (g) 
reconstruction with a Gaussian beam. 

Figure 7. (a) Test sample with a random distribution of objects; (b) an instance of the test specimen
with a single object; (c) reconstruction with a top-hat beam; (d) reconstruction with a Gaussian beam;
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An instance of the reconstruction for a single particle in the illumination volume with
a top-hat beam and a Gaussian beam is shown in Figure 7c,d, respectively. Similarly, the
reconstructions for the multiple particles in the sample volume are shown in Figure 7f,g,
respectively. The samples used for the two cases are shown in Figure 7b,e, respectively.
All the reconstructions presented in this section were obtained after 500 iterations of the
HIO algorithm, in which the first 200 were performed by using dynamic support and
the last 300 were with fixed support. In order to make the quantitative comparisons of
the reconstructions using the Gaussian beam and the top-hat beam, we have defined a
contrast function:

contrast function =
mean value of a region of interest inside the reconstructed object

mean value of a region of interest outside of the reconstructed object
(2)

A plot of the contrast function for the reconstructions in both cases is shown in Figure 8.
From the plot, it is obvious that for the overall data, the reconstruction from the top-hat
beam performs better than the reconstructions from the Gaussian beam. Taking a threshold
of the contrast value 0.33 (corresponding to the S/N ratio of 3:1), we found that 58 images
were successfully reconstructed by the Gaussian beam while all the images were successfully
reconstructed by the top-hat beam. The peak values in the plot for the reconstruction with
both beams showed the inconsistency in the reconstruction. Furthermore, from our studies, we
observed that, overall, the contrast in the reconstructed image was enhanced by a factor as high
as ~10 times and on average by a factor of 1.35 times with the use of the top-hat beam.
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5. Conclusions

To summarize, we have proposed a design of the optical element to generate the
top-hat X-ray beam and have shown the usefulness of the top-hat beam in performing
X-ray diffraction imaging of extended images. The design proposed here can be adapted
for different X-ray wavelengths, such as the ones operating in the soft X-ray regime and
Extreme UV regime. We also show that the hit rate, which we define as the ratio of the
practically useful data giving a reasonable reconstruction and the total volume of the
data collected of the single particle X-ray diffraction imaging practiced at XFELs, can be
improved by the use of the top-hat beam. This in turn makes the XFEL coherent diffraction
imaging more efficient. Furthermore, the use of a top-hat beam can also lead to the beam-
stop-less experiments for X-ray CDI, thus making the low-resolution information more
accessible. The proposed scheme for the top-hat beam generation can also be used in X-ray
Ptychography to decrease the dynamic range in the diffraction pattern and thus make the
recording of high-resolution information easier [31]. Further, such uniform illumination
will also be preferred in X-ray pump-probe experiments where the uniform excitation of
the sample is desired. An experiment to validate the proposition made in this article will
be performed in the near future.
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