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Abstract: An advanced Neuro-space mapping (Neuro-SM) multiphysics parametric modeling ap-
proach for microwave passive components is proposed in this paper. The electromagnetic (EM)
domain model, which represents the EM responses with respect to geometrical parameters, is re-
garded as a coarse model. The multiphysics domain model, which represents the multiphysics
responses with respect to both geometrical parameters and multiphysics parameters, is regarded as
a fine model. The proposed model is constructed by the input mapping, the output mapping and
the coarse model. The input mapping is used to map multiphysics parameters to EM parameters.
The output mapping is introduced to further narrow the gap between the output of the coarse model
and the multiphysics data. In addition, a three-stage training method is proposed for efficiently
developing the proposed multiphysics model. The proposed technique, which combines the effi-
ciency of EM analysis and the accuracy of multiphysics analysis, can achieve better accuracy with
less multiphysics data than existing modeling methods. The developed Neuro-SM multiphysics
model provides accurate and fast predictions of multiphysics responses. Therefore, the design cycle
of microwave passive components is shortened while the modeling cost is significantly reduced.
Two microwave filter examples are utilized to demonstrate the accuracy of the proposed parametric
modeling technique.

Keywords: microwave passive components; Neuro-space mapping; multiphysics modeling;
parametric modeling

1. Introduction

In the practical applications of microwave passive components, the device response
is affected by the electromagnetic (EM) domain and the physics domains [1–3]. The EM
behavior of microwave passive components directly changes the performance of electronic
systems and circuits [4,5]. Multiphysics areas such as thermal and structural mechanics
influence the device response by changing the EM behavior of the device. Therefore,
EM-centric multiphysics parametric modeling requires us to consider high performance
microwave components design. The high-precision and high-efficiency multiphysics model
can shorten the design cycle and improve the prediction accuracy of EM behaviors [6].

In recent years, many researchers have made contributions to EM-centric multiphysics
modeling methods [7–9]. An accurate and efficient multiphysics modeling method for
BAW filters at high power levels is proposed in [10]. In [11], researchers quantify the
temperature drift of microwave filters by a multiphysics coupling analysis approach.
In [12], a multiphysics model is developed to analyze the average and peak power handling
capabilities of the combined substrate-integrated waveguide filters. In [13], a multiphysics
modeling approach is used to calculate the multiphysics phenomenon of microstrip line
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excited by high voltages, which better explains the intrinsic mechanism of microstrip
behavior. These research projects represent the multiphysics behavior of the microwave
components and accurately provide solutions for multiphysics problems. However, the
modeling methods above are time-consuming and computationally expensive due to the
coupling among different domains and iterative calculations.

Recently, artificial neural networks (ANNs), which have been used in multiphysics
modeling, have become a powerful technology for modeling and optimizing microwave
components [14–16]. The trained ANNs can accurately represent the relationships between
the multiphysics responses and multiphysics parameters in [17]. In [18], an automated
model generation (AMG) algorithm is introduced to multiphysics area, and an innovative
automated neural network-based multiphysics parametric modeling algorithm is proposed.
For achieving good accuracy, the neural networks in [17,18] need a lot of computation-
ally expensive multiphysics data for training, increasing the modeling cost. Therefore,
several knowledge-based neural network modeling approaches are proposed to reduce
the modeling cost while ensuring the accuracy of multiphysics design. For instance, the
technique combining neuro-transfer function (Neuro-TF) with correlating mappings is
proposed for EM-based multiphysics analysis in [19]. The modeling technique combin-
ing ANNs and pole/residue based transfer function is proposed in [20] to speed up the
multiphysics modeling process for microwave components. In addition, the Neuro-space
mapping (Neuro-SM) is introduced to multiphysics modeling for the first time in [21].
The existing methods are proven to be efficient in current multiphysics modeling. When
the multiphysics environment is more complex and the variation range of multiphysics
variables is more significant, the accuracy and efficiency of the existing methods fails to
meet the requirement.

A novel Neuro-SM multiphysics parametric modeling approach, which can further re-
duce modeling costs and improve model accuracy, is proposed in this paper. The proposed
technique constructs a new mapping structure, which includes three modules, i.e., the
input mapping, the output mapping and the coarse model. An output mapping is added to
the coarse model’s output terminal to match the fine model’s output. The proposed model
structure can effectively reduce the calculation cost with a similar accuracy requirement and
improve the accuracy of the multiphysics model with the same calculation cost. A three-
stage training method is proposed for developing an accurate parametric multiphysics
model. The developed multiphysics model can effectively predict the EM-centric multi-
physics response of microwave components. The applications of an iris-coupled microwave
cavity filter and a three-pole waveguide filter in multiphysics parametric modeling are
utilized to demonstrate that the proposed technique can effectively shorten the design cycle
and reduce the modeling cost.

2. Proposed Neuro-SM Multiphysics Model

This section illustrates the novel multiphysics model structure, including the input
mapping module, output mapping module and coarse model module. Let the EM domain
model, with respect to geometrical parameters, be called the coarse model. The coarse
model is constructed by the ANN parametric modeling methods. The multiphysics do-
main model, with respect to both geometrical parameters and multiphysics parameters,
is called the fine model. The fine model is the EM-centric multiphysics responses, which
take the interaction of physics domains into consideration. The input mapping aims to
map multiphysics design parameters to EM design parameters. The output mapping is
formulated to match the multiphysics data by changing the output of the coarse model.
Neuro-SM technique is utilized to learn the mathematical connection between the coarse
model and the fine model.

2.1. Structure of the Proposed Neuro-SM Multiphysics Parametric Model

The proposed Neuro-SM model structure is illustrated in Figure 1. Besides the EM
domain, the multiphysics domain includes many other physics domains, such as the force
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field and the temperature field. Therefore, the input variables of the fine model include not
only the geometrical parameters xg (column vector) but also the multiphysics parameters
xm (column vector). Let x be a vector which includes the input variables of the fine model.
The input parameters of the fine model are defined as x = [xT

g xT
m]

T. Multiphysics domain
frequency f is the separate input parameter. Let y be a vector including all the outputs
of the fine model, which represents the EM-centric multiphysics responses. The coarse
model involves EM domain exclusively, so the geometrical parameters xgc are the only
input variables of the coarse model.

Figure 1. Structure of the proposed Neuro-SM multiphysics parametric model.

Let xc be a vector including the input variables of the coarse model and that is xc = xgc. EM
domain frequency fc is the separate input parameter for the coarse model. Let yc be a
vector including all the outputs of the coarse model, which represents the EM responses.

The coarse model should be established firstly in the proposed model. The ANN
parametric modeling method is used to develop the coarse model, generally. Training data
and test data for developing the ANN model are generated by EM simulation software
(such as HFSS). The nonlinear relationship between the input and output of the coarse
model is learned through training data, and the test data are used to verify the accuracy
of the established model. The trained coarse model can be regarded as available prior
knowledge for developing the fine model. Let gANN(·) be the neural network formula of
the coarse model, which is shown as:

yc = gANN(xgc, fc, wc) (1)

where gANN represents a multilayer feedforward neural network [22], xgc and fc are the
inputs of the coarse model, yc is the outputs of the coarse model and wc represents a vector
containing all weight parameters of this neural network.

In the actual multiphysics domain problem, there is a correlation between multiphysics
variables and EM variables. However, most EM simulation software cannot introduce
multiphysics parameters to perform multiphysics simulation. To transform multiphysics
problems to EM problems, one input mapping module is formulated to transform mul-
tiphysics domain variables to EM domain variables. The frequency f and the design
parameter x are mapped to the frequency fc and the design parameter xc. Let fANN1 be the
input mapping neural network function, which is formulated as:

(xgc, fc) = fANN1(xg, xm, f , w1) (2)
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where fANN1 represents a multilayer feedforward neural network [22]. xg, xm and f are
the inputs of the input mapping. xgc and fc are the outputs of the input mapping. w1
represents a vector containing all weight parameters of the input mapping neural network.

The multiphysics domain input variables are mapped to the EM domain with the
input mapping. The coarse model input variables, which include the information of the
multiphysics design parameters, are generated. The output of the coarse model with
respect to the new input variables can represent the EM-centric multiphysics responses.
The model constructed by the input mapping and the coarse model cannot achieve the
desired accuracy in many cases. The output mapping, adding on the output of coarse
model, is introduced in the new multiphysics model. The output mapping is formulated to
improve the model accuracy further and narrow the difference between the coarse model
output and the modeling data. Let fANN2 be the output mapping neural network function,
which is formulated as:

y = fANN2(yc, w2) (3)

where fANN2 represents a multilayer feedforward neural network [22], yc is the inputs of
the output mapping, y is the output of the output mapping and w2 represents a vector
containing all neural network weight parameters of the output mapping.

2.2. Proposed Multiphysics Training and Test Algorithm

Training is the most important step in multiphysics parametric modeling. An efficient
training algorithm can improve the model accuracy and provide reliable response predic-
tion. A three-stage training algorithm for the proposed multiphysics model is proposed
in this paper. Firstly, the training and test data of the fine model and the coarse model
are generated by performing multiphysics simulation and EM simulation, respectively.
EM domain simulation data, which represent the EM domain responses, are used for the
coarse model modeling. Multiphysics domain simulation data, which represent EM-centric
multiphysics responses, are used for the fine model modeling. The design of experiments
(DOE) sampling method is utilized to generate the modeling data for speeding up valid
data generation [23]. DOE can obtain data by providing a reasonable distribution of simu-
lation points and ensuring the reliability of the modeling area. In this method, a different
‘level’ indicates different numbers of equidistant points within the modeling scope. The
value of the ‘level’ is the square root of the number of data samples. For example, 9-level
means 81 data samples, which is expressed as 81 sets.

In this paper, a three-stage training method is proposed to develop an accurate model
efficiently. The first stage is coarse model training for the EM domain. The coarse model
is developed by the ANN parametric modeling technique. The weight parameters wc in
Equation (1) are optimized, making the trained coarse model accurately represent the EM
responses with the EM domain geometrical parameters. The training process of the coarse
model is performed until the test error is lower than the user-defined threshold θ. Then, the
trained coarse model with fixed wc can be used to develop the fine model. The second stage
is the input mapping training. We set xgc = xg and fc = f to obtain the unit input mapping.
Then, the weight parameter w1 in the unit input mapping is optimized, making the coarse
model output match the multiphysics training data as much as possible. When the training
error of the coarse model cannot reduce further, the second stage training finishes. The
third stage is output mapping training. We set y = yc to obtain the unit output mapping
and optimize the weight parameter w2 for further minimizing the difference between the
coarse model output and the multiphysics data. The purpose of establishing the unit input
and output mapping is to prevent the accuracy of the overall model from declining when
the new mappings are added. After the three-stage training, the trained model represents
the EM-centric multiphysics responses accurately.

During the proposed training process, the first-order derivatives ∂y/∂w1 and ∂y/∂w2
are required to guide the gradient-based training process. The weight parameters w1 and
w2 are the optimization variables. The first derivative of the output y of the proposed
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multi-physical model relative to the weight parameter w1 of the input mapping module is
expressed as:

∂yT(xg, xm, f , w1, w2)

∂w1
=

∂yT(yc)

∂yc
(

∂yT
c (xgc, fc)

∂xgc

∂xT
gc(xg, xm, f , w1)

∂w1
+

∂yT
c (xgc, fc)

∂ fc

∂ fc(xg, xm, f , w1)

∂w1
) (4)

where ∂yT(yc)/∂yc represents the derivative of the fine model outputs y with respect to the
coarse model outputs yc. ∂yT

c (xgc, fc)/∂xgc represents the derivative of the coarse model
outputs yc with respect to the coarse model geometrical parameters xgc. ∂yT

c (xgc, fc)/∂ fc
represents the derivative of the coarse model outputs yc with respect to the coarse model
frequency fc. ∂xT

gc(xg, xm, f , w1)/∂w1 represents the derivative of coarse model geometrical
parameters xgc with respect to the weight parameters w1 of the input mapping function
fANN1 calculated by back propagation [24]. ∂ fc(xg, xm, f , w1)/∂w1 represents the derivative
of coarse model frequency fc with respect to the weight parameters w1 of the input mapping
function fANN1.

Similarly, the first order derivatives of y with respect to w2 is derived by:

∂yT(xg, xm, f , w1, w2)

∂w2
=

∂yT(yc)

∂w2
(5)

where ∂yT(yc)/∂w2 represents the derivative of fine model outputs with respect to the
weight parameters w2 of the output mapping function fANN2.

In the training process, the training error ETr and the test error ETe are used to check
the learning ability and predictive ability of the trained model, respectively. The training
process is performed until ETr is lower than the user-defined threshold ε. After the training
error ETr achieves the requirements, a set of multiphysics test data never used in the training
process is applied to measure the predictive ability of the trained model. The training and
test process is performed cyclically until both ETr and ETe meet the accuracy requirements.
The proposed multiphysics model training and test processes are shown in Figure 2. The
training error ETr and test error ETe functions are the same, defined as:

E =
1
2

T

∑
j=1

(yj(xg, xm, f , w1, w2)− ydj)
2 (6)

where yj is the jth EM-centric multiphysics responses of the fine model. ydj is the jth train or
test data. The subscript j is the training or test data index, and T is the total amount of the
training or test data. The training error calculated by Equation (6) is minimized by adjusting
the model weight parameters in the training process. Once the multiphysics parametric model
is developed, it can present EM-centric multiphysics responses of the fine model.

Figure 2. Flowchart of the proposed Neuro-SM multiphysics model training and test process.
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3. Examples
3.1. Iris Coupled Microwave Cavity Filter

In the first example, the proposed modeling technique is applied to the iris coupled
microwave cavity filter, as shown in Figure 3. The filter structure is a standard WR-90
waveguide (the width is 22.86 mm, and the height is 10.16 mm), and the thickness of
all coupling windows is 2.54 mm. The iris widths W1, W2 and W3 are the geometrical
design parameters of the filter. The power P, which is supplied to the cavity filter, is a
multiphysics design parameter. The power loss generates heat in the cavity, resulting in
the thermal effects and mechanical deformation. These changes caused by thermal effects
and mechanical deformation make the output of multiphysics simulation different from
that of pure electromagnetic simulation. This example has four design parameters, i.e.,
x = [W1 W2 W3 P]T . Frequency f is an extra input. The geometrical design parameter of the
multiphysics model is xg = [W1 W2 W3]

T . The multiphysics design parameter is xm = P.
The model has one output which represents the EM-centric multiphysics responses with
respect to different values of multiphysics domain parameters, i.e., y = S11. Only EM
domain variables need to be considered for developing the coarse model. The coarse model
has three design parameters xc = [W1 W2 W3]

T . Frequency fc is an additional input.

Figure 3. Structure of the iris coupled microwave cavity filter.

ANSYS Workbench 17.0 is used to perform multiphysics simulations to generate
training and test samples for the multiphysics model. In this example, the interaction
of three physics domains (thermal, mechanical and EM domain) leads to changes in EM
responses. The actual simulation process of the ANSYS Workbench is shown in Figure 4.
The geometry parameters of the waveguide filter perform EM simulation. The power
loss generates heat with the action of the input power in the cavity filter, resulting in
thermal deformation of the filter structure. Different physical domains interact with each
other, and different input powers have different EM responses. Thus, more than simple
electromagnetic field analysis is needed to represent multiple physical responses, and other
physical domains need to be included in the model for multiple physical analysis. An
ANSYS HFSS EM simulator with fast simulation capabilities generates data for the coarse
model modeling. Figure 5 shows the responses of EM analysis and multiphysics analysis
with the same geometrical parameters. It is observed that there is a difference between
multiphysics analysis and EM analysis with the same geometrical parameters, and the
pure EM analysis cannot represent the multiphysics responses. In this paper, the proposed
technique is developed to represent multiphysics responses for this filter example.
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Figure 4. Actual process of ANSYS Workbench simulation for the iris coupled microwave cavity filter.

Figure 5. Comparison of the multiphysics output responses and pure EM output responses with the
same geometrical parameters for the iris coupled microwave cavity filter.

The DOE sampling method is utilized for data generation of the coarse model and
the fine model. For the fine model, this example uses 5-level (25 sets) and 9-level (81 sets)
of DOE to define multiphysics training data, respectively. The 8-level (64 sets) of DOE
is used to define multiphysics test data. For the coarse model, 9-level (81 sets) of DOE
is used to define EM domain training data; the 8-level (64 sets) of DOE is used to define
EM domain test data. The test data are never used in the training process. To accurately
map multiphysics problems to EM problems, the range of geometrical parameters of the
coarse model is lager than that of the fine model. Table 1 shows the ranges of the training
and test data chosen in this example. The input frequency range is from 9.5 to 10.5 GHz
with 0.01 GHz step. For this example, 8181 samples and 2525 samples are used to train
the fine model, respectively, and 6464 samples are used to test the fine model. A total
of 8181 samples are used to train the coarse model, and 6464 samples are used to test
the coarse model. The training samples and test samples are imported into the software
NeuroModelerPlus to complete the training and test process.
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Table 1. Definition of training and test data for multiphysics parametric modeling of the iris coupled
microwave cavity filter.

Input Variables
Training Data Test Data

Min Max Step Min Max Step

Coarse model
W1 (mm) 4.81 5.13 0.04 4.83 5.11 0.04
W2 (mm) 6.73 7.05 0.04 6.75 7.03 0.04
W3 (mm) 7.24 7.56 0.04 7.26 7.54 0.04

Fine model

W1 (mm) 4.818 5.098 0.07 4.84 5.085 0.035
W2 (mm) 6.7635 7.0035 0.06 6.792 7.002 0.03
W3 (mm) 7.254 7.494 0.06 7.285 7.495 0.03

P (W) 10 50 10 12.5 47.5 5

Before developing the multiphysics domain fine model, a four-layer multilayer per-
ceptron (MLP) structure is used to develop the coarse model in this example. The training
and test process of the coarse model is completed in NeuroModelerPlus. The numbers of
hidden neurons in the two hidden layers of the coarse model are 10 and 10, respectively.
After the establishment of the coarse model, the fine model, including two mapping neural
networks and the trained coarse model, is developed. The construction and training process
for the proposed multiphysics models is completed in NeuroModelerPlus, as well. The
developed multiphysics model can represent the EM-centric multiphysics responses with
respect to different values of multiphysics domain design parameters. The accuracy of
the proposed model can be expressed by training error and test error, which are obtained
by Equation (6). The training error for the developed multiphysics model with 81 sets of
training data is 1.18%, while the test error is 1.22%. The numbers of hidden neurons for the
input and output mapping are 10 and 10, respectively. The training error for the developed
multiphysics model with 25 sets of training data is 1.20%, while the test error is 1.31%.
The numbers of hidden neurons for the input and output mapping modules are 5 and 5,
respectively. The development process of the multiphysics model takes about 15 min.

For this example, the ANN multiphysics modeling method in [17], the Neuro-TF
multiphysics modeling method in [20] and the existing Neuro-SM multiphysics modeling
method in [21] are used to develop the multiphysics model in two cases: with 25 sets of
multiphysics training data and 81 sets of multiphysics training data. The coarse model and
the numbers of hidden neurons of the multiphysics model in [21] are all the same as the
proposed multiphysics model. The modeling results of four different modeling methods
are compared from three aspects: the amount of modeling data, the modeling time and the
modeling error, as shown in Table 2.

Table 2. Modeling results of four multiphysics parametric modeling methods for the iris coupled
microwave cavity filter.

Modeling Method EM Data Multiphysics Data Training Error Test Error Training Time Modeling Time

ANN model 0
81 1.81% 2.75% 0.1 h 10.6 h
25 1.45% 14.76% 0.1 h 3.4 h

Neuro-TF model 0
81 1.49% 2.04% 0.25 h 10.75 h
25 1.24% 3.14% 0.25 h 3.55 h

Existing Neuro-SM model 81
81 1.35% 1.85% 0.25 h 11.54 h
25 1.43% 2.65% 0.25 h 4.34 h

Proposed Neuro-SM model 81
81 1.12% 1.23% 0.25 h 11.54 h
25 1.20% 1.31% 0.25 h 4.34 h

The results in Table 2 show that the proposed model, which includes three modules, is
more accurate than other models developed by the existing methods. The training error
and the test error of the proposed model with less multiphysics data (25 sets) is much
smaller than that of the ANN model with more multiphysics data (81 sets). Since the
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proposed model contains a coarse model which provides physical properties, the proposed
model with less data and modeling time is more accurate than the ANN model. The output
mapping is introduced into the proposed model to narrow the difference between the
coarse model and the fine model. Therefore, the proposed model is more accurate than the
Neuro-TF model and the existing Neuro-SM model with the same multiphysics data and
modeling cost.

The comparison of computation time between ANSYS Workbench software and the
proposed multiphysics model with respect to different amounts of multiphysics data is
shown in Table 3. It can be seen from the table that the multiphysics simulation software
(ANSYS Workbench) takes a lot of time to calculate new multiphysics data. However,
the modeling cost and time of the proposed model is a one-time investment. Once the
proposed model is established, the time to calculate new multiphysics data is negligible.
The advantage of the proposed multiphysics is more obvious with more calculated data.

Table 3. Comparison of computation time between the multiphysics software simulation and the
proposed Neuro-SM multiphysics model (25 data) for the iris coupled microwave cavity filter.

No. of Multiphysics Data
Computation Time

ANSYS Workbench Proposed Neuro-SM Model

1 ≈7 min 4.34 h + 0.03 s
50 ≈6 h 4.34 h + 1.6 s

100 ≈12 h 4.34 h + 3.1 s

The comparison of the decibel values of S11 of the proposed multiphysics model
trained with less data (25 sets) and the existing Neuro-SM model trained with less (25 sets)
and more data (81 sets) are shown in Figure 6. The four models are operated under the
same design parameters randomly selected from the test data. The proposed multiphysics
model can provide accurate prediction for the test sample even if it has never been learned
in the training process. Compared with the existing Neuro-SM model, the proposed model
can achieve better accuracy.

Figure 6. S11 (in decibels) comparison between the multiphysics simulation data, ANN model
(81 data), existing Neuro-SM model (81 data), and proposed Neuro-SM model (25 data) when the test
sample is x = [4.945, 7.002, 7.315, 47.5]T for the iris coupled microwave cavity filter.

3.2. Three-Pole Waveguide Filter

For the second example, the proposed parametric modeling technique is applied to a
three-pole waveguide filter with tuning posts placed at the center of each coupling window
and cavity, as shown in Figure 7. The heights of the tuning posts (H1 and H2) and the square
cross section (H3 and H4) are the geometrical design parameters of this filter. The electronic
potentials V1 and V2 applied across the piezo-actuator are multiphysics design parameters,
which provide the tunability for the waveguide filter by causing the deformation of the
piezo-actuator. The multiphysics design parameters V1 and V2 can change the EM response
due to the piezoelectric effect and mechanical deformation. The waveguide structure is a
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standard WR-90 waveguide (the width is 22.86 mm and the height is 10.16 mm), and the
thickness of all coupling windows is 3 mm. This example has six design parameters, i.e.,
x = [H1 H2 H3 H4 V1 V2]

T . Frequency f is an extra input. The geometrical design parame-
ter of the multiphysics model is xg = [H1 H2 H3 H4]

T ; the multiphysics design parameter
is xm = [V1 V2]

T . The model has one output which represents the EM-centric multiphysics
responses with respect to different values of multiphysics domain design parameters, i.e.,
y = S11. Only EM domain variables need to be considered for developing the coarse model.
The geometrical design parameter of the coarse model is xc = [H1 H2 H3 H4]

T . Frequency
fc is an additional input of the coarse model.

Figure 7. Structure of the three-pole waveguide filter.

In this example, training and test samples for the multiphysics model are generated by
COMSOL Multiphysics 5.3a, which performs multiphysics simulations. The interaction of
three physics domains (electrostatic, mechanical and EM domain) leads to the changes in
EM responses. The actual simulation process of COMSOL Multiphysics is shown in Figure 8.
The geometry parameters of the waveguide filter perform EM simulation. The variation
in the bias voltage V1 and V2, which causes the deformation of the piezoelectric actuator,
can change the EM response. Different V1 and V2 have different response waveforms, thus,
the bias voltages V1 and V2 need to be included in the multiphysical model. The ANSYS
HFSS EM simulator with fast simulation capabilities generates modeling data for the coarse
model modeling. Figure 9 shows the responses of EM analysis and multiphysics analysis
with the same geometrical parameters. It is observed that there is a difference between
multiphysics analysis and EM analysis with the same geometrical parameters. Pure EM
analysis cannot represent the multiphysics responses. In this paper, the proposed technique
is developed to represent multiphysics responses for this filter example.

Figure 8. Actual process of COMSOL Multiphysics simulation for the three-pole waveguide filter.
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Figure 9. Comparison of the multiphysics output responses and pure EM output responses with the
same geometrical parameters for the three-pole waveguide filter.

DOE sampling method is utilized for data generation of the coarse model and the
fine model. For the fine model, this example uses 5-level (25 sets) and 9-level (81 sets) of
DOE to define multiphysics training data, respectively. The 8-level (64 sets) of DOE is
used to define multiphysics test data. For the coarse model, 9-level (81 sets) of DOE is
used to define EM domain training data, and 8-level (64 sets) of DOE is used to define EM
domain test data. The test data are never used in the training process. To accurately map
multiphysics problems to EM problems, the range of geometrical parameters of the coarse
model is larger than that of the fine model. Table 4 shows the ranges of the training and
test data chosen in this example. The input frequency range is from 8.25 to 9.25 GHz with
0.01 GHz step. For this example, 8181 samples and 2525 samples are used to train the fine
model, respectively, and 6464 samples are used to test the fine model. In all, 8181 samples
are used to train the coarse model, and 6464 samples are used to test the coarse model. The
training samples and test samples are imported into the NeuroModelerPlus software to
complete the training and test process.

Table 4. Definition of training and test data for multiphysics parametric modeling of the three-pole
waveguide filter.

Input Variables
Training Data Test Data

Min Max Step Min Max Step

Coarse model

H1 (mm) 2.86 3.1 0.03 2.87 3.08 0.03
H2 (mm) 3.08 3.32 0.03 3.09 3.30 0.03
H3 (mm) 2.73 2.97 0.03 2.74 2.95 0.03
H4 (mm) 2.535 2.775 0.03 2.54 2.75 0.03

Fine model

H1 (mm) 2.875 3.075 0.05 2.89 3.065 0.025
H2 (mm) 3.1 3.3 0.05 3.115 3.29 0.025
H3 (mm) 2.75 2.95 0.05 2.765 2.94 0.025
H4 (mm) 2.55 2.75 0.05 2.565 2.74 0.025

V1 (V) −400 400 100 −175 175 50
V2 (V) −400 400 100 −175 175 50

Before developing the multiphysics domain fine model, a three-layer MLP structure
is used to develop the coarse model in this example. The training and test process for the
coarse model is completed in NeuroModelerPlus. The numbers of hidden neurons for
the coarse model are 30 and 20 when 25 and 81 sets of training data are used to develop
the multiphysics fine model, respectively. After the establishment of the coarse model,
the fine model, including two mapping neural networks and the trained coarse model, is
developed. The construction and training process of the proposed multiphysics model is
completed in NeuroModelerPlus, as well. The developed multiphysics model can represent
the EM-centric multiphysics responses with respect to different values of multiphysics
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domain design parameters. The accuracy of the proposed model can be expressed by
training error and test error, which are obtained by Equation (6). The training error for
the developed multiphysics model with 81 sets of training data is 1.19%, while the test
error is 1.24%. The numbers of hidden neurons for the input and output mapping are 5
and 5, respectively. The training error for the developed multiphysics model with 25 sets of
training data is 1.25%, while the test error is 1.63%. The numbers of hidden neurons of the
input and output mapping are the same as the numbers for 81 sets of training data. The
development process of multiphysics model takes about 18 min.

For this waveguide filter example, the ANN multiphysics modeling method in [17], the
Neuro-TF multiphysics modeling method in [20] and the existing Neuro-SM multiphysics
modeling method in [21] are used to develop the multiphysics model in two cases: with
25 sets of multiphysics training data and 81 sets of multiphysics training data. The coarse
model and the numbers of hidden neurons of the multiphysics model in [21] are the same
as the proposed multiphysics model. The modeling results of four different modeling
methods are compared from three aspects: the amount of modeling data, the modeling time
and the modeling error, as shown in Table 5. The results in Table 5 show that the proposed
model, which includes three modules, is more accurate than other models developed by
the existing methods. The training error and the test error of the proposed model with
less multiphysics data (25 sets) is much smaller than that of the ANN model with more
multiphysics data (81 sets). Since the proposed model contains a coarse model which
provide physical properties, the proposed model with less data and modeling time is more
accurate than the ANN model. The output mapping is introduced into the proposed model
to narrow the difference between the coarse model and the fine model. Therefore, the
proposed model is more accurate than the Neuro-TF model and the existing Neuro-SM
model with the same multiphysics data and modeling cost.

Table 5. Modeling results of four multiphysics parametric modeling methods for the three-pole
waveguide filter.

Modeling Method EM data Multiphysics
Data

Training
Error Test Error Data Generation

Time
Training

Time
Modeling

Time

ANN model 0
81 1.35% 2.94% 67.9 h 0.15 h 68.05 h
25 1.30% 13.22% 23.5 h 0.15 h 23.65 h

Neuro-TF model 0
81 1.53% 2.34% 67.9 h 0.15 h 68.05 h

25 1.29% 4.21% 23.5 h 0.15 h 23.65 h

Existing Neuro-SM model 81
81 1.58% 1.71% 69.2 h 0.3 h 69.5 h
25 1.61% 2.50% 24.8 h 0.3 h 25.1 h

Proposed Neuro-SM model 81
81 1.19% 1.44% 69.2 h 0.3 h 69.5 h
25 1.25% 1.63% 24.8 h 0.3 h 25.1 h

The comparison of computation time between COMSOL Multiphysics software and
the proposed multiphysics model with respect to different amounts of multiphysics data
are shown in Table 6. It can be seen from the table that the multiphysics simulation software
(COMSOL Multiphysics) requires a lot of time to calculate new multiphysics data. However,
the modeling cost and time of the proposed model is a one-time investment. Once the
proposed model is established, the time to calculate new multiphysics data is negligible.
The advantage of the proposed multiphysics is more obvious with more calculated data.
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Table 6. Comparison of computation time between the multiphysics software simulation and the
proposed Neuro-SM multiphysics model (25 data points) for the three-pole waveguide filter.

No. of Multiphysics Data
Computation Time

COMSOL Multiphysics Proposed Neuro-SM Model

1 ≈0.9 h 25.1 h + 0.05 s
50 ≈45 h 25.1 h + 2 s

100 ≈90 h 25.1 h + 4 s

The comparison of the decibel values of S11 of the proposed multiphysics model
trained with less data (25 sets) and the existing Neuro-SM model trained with less (25 sets)
and more data (81 sets) are shown in Figure 10. The four models are operated under the
same design parameters randomly selected from the test data. The proposed multiphysics
model can provide an accurate prediction for test samples even if it has never been learned
in the training process. Compared with the existing Neuro-SM model, the proposed model
can achieve better accuracy.

Figure 10. S11 (in decibels) comparison between the multiphysics simulation data, ANN model
(81 data points), existing Neuro-SM model (81 data points) and proposed Neuro-SM model (25 data
points) when the test sample is x = [3.065, 3.14, 2.84, 2.715, 125,−75]T for the iris coupled microwave
cavity filter.

4. Conclusions

This paper proposed an advanced Neuro-SM multiphysics parametric modeling
approach for microwave passive components. The output mapping is introduced into
the Neuro-SM multiphysics model for the first time to match the coarse model output
with the multiphysics data. The proposed technique provides more effective combinations
between the mapping structure and the coarse model. A three-stage training method is
proposed to accurately develop the proposed multiphysics model. The proposed model
can achieve good accuracy using less multiphysics data than the existing Neuro-SM model,
the Neuro-TF model and the ANN model. Compared with the multiphysics software
simulation, the developed multiphysics model can provide an accurate prediction of EM-
centric multiphysics responses using less computational time and less computational
cost. The more multi-physical responses required, the more obvious the advantage of
the proposed model in time consumption. The proposed parametric modeling technique
shortens the design cycle time and improves the design accuracy. The two microwave filter
examples verify the applicability and advantage of the proposed technique.
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