Enhancement of Imaging Quality of Interferenceless Coded Aperture Correlation Holography Based on Physics-Informed Deep Learning
Abstract
:1. Introduction
2. Methodology
2.1. Coherently Illuminated I-COACH
2.2. Numerical Analysis
2.3. Image Reconstruction by Physics-Informed Deep Learning
3. Experimental Results and Discussions
3.1. Experimental Design
3.2. Determine the Optimal Number of Dots
3.3. Data Collection and Implementation Details
3.4. Experimental Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dicke, R.H. Scatter-Hole Cameras for X-Rays and Gamma Rays. Astrophys. J. 1968, 153, 101–106. [Google Scholar] [CrossRef]
- Rosen, J.; Nisan, S.; Gary, B. Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging. Opt. Express 2011, 19, 26249–26268. [Google Scholar] [CrossRef] [PubMed]
- Bianco, V.; Mandracchia, B.; Marchesano, V.; Pagliarulo, V.; Olivieri, F.; Coppola, S.; Paturzo, M.; Ferraro, P. Endowing a plain fluidic chip with micro-optics: A holographic microscope slide. Light Sci. Appl. 2017, 6, e17055. [Google Scholar] [CrossRef] [PubMed]
- Merola, F.; Memmolo, P.; Miccio, L.; Savoia, R.; Ferraro, P. Tomographic flow cytometry by digital holography. Light Sci. Appl. 2016, 6, e16241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayakmar, A.; Kashter, Y.; Kelner, R.; Rosen, J. Coded aperture correlation holography—A new type of incoherent digital holograms. Opt. Express 2016, 24, 2430–2441. [Google Scholar] [CrossRef] [Green Version]
- Rosen, J.; Anand, V.; Rai, M.R.; Mukherjee, S.; Bulbul, A. Review of 3D imaging by coded aperture correlation holography (COACH). Appl. Sci. 2019, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Kelner, R.; Katz, B.; Rosen, J. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system. Optica 2014, 1, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelner, R.; Rosen, J. Parallel-mode scanning optical sectioning using digital Fresnel holography with three-wave interference phase-shifting. Opt. Express 2016, 24, 2200–2214. [Google Scholar] [CrossRef] [Green Version]
- Vijayakumar, A.; Rosen, J. Interferenceless coded aperture correlation holography—A new technique for recording incoherent digital holograms without two-wave interference. Opt. Express 2017, 25, 13883–13896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hai, N.; Rosen, J. Interferenceless and motionless method for recording digital holograms of coherently illuminated 3D objects by coded aperture correlation holography system. Opt. Express 2019, 27, 24324–24339. [Google Scholar] [CrossRef]
- Hai, N.; Rosen, J. Coded aperture correlation holographic microscope for single-shot quantitative phase and amplitude imaging with extended field of view. Opt. Express 2020, 28, 27372–27386. [Google Scholar] [CrossRef]
- Hai, N.; Rosen, J. Doubling the acquisition rate by spatial multiplexing of holograms in coherent sparse coded aperture correlation holography. Opt. Lett. 2020, 45, 3439–3442. [Google Scholar] [CrossRef]
- Rai, M.R.; Rosen, J. Noise suppression by controlling the sparsity of the point spread function in interferenceless coded aperture correlation holography (I-COACH). Opt. Express 2019, 27, 24311–24323. [Google Scholar] [CrossRef]
- Vijayakmar, A.; Rosen, J.; Ratnam, M. Single camera shot interferenceless coded aperture correlation holography. Opt. Lett. 2017, 42, 3992–3995. [Google Scholar]
- Rai, M.R.; Vijayakumar, A.; Joseph, R. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH). Opt. Express 2018, 26, 18143–18154. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, C.; Ma, T.; Qin, Y.; Lv, S. Fast and Noise-suppressed Incoherent Coded Aperture Correlation Holographic Imaging. Opt. Express 2021, 29, 8064–8075. [Google Scholar] [CrossRef] [PubMed]
- Nishizaki, Y.; Valdivia, M.; Horisaki, R.; Kitaguchi, K.; Saito, M.; Tanida, J.; Vera, E. Deep learning wavefront sensing. Opt. Express 2019, 27, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Nehme, E.; Weiss, L.E.; Michaeli, T.; Shechtman, Y. Deep-STORM: Super-resolution single-molecule microscopy by deep learning. Optica 2018, 5, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.B.; Wu, B.W.; Zhang, B.Y.; Ma, J.; Tan, J.B. Deep learning enables confocal laser-scanning microscopy with enhanced resolution. Opt. Lett. 2021, 46, 4932–4935. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.; Ryu, D.H.; Jo, Y.J.; Kim, Y.S.; Park, Y.K. Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction tomography. Opt. Express 2019, 27, 4927–4943. [Google Scholar] [CrossRef] [Green Version]
- Rivenson, Y.; Zhang, Y.; Gunaydin, H.; Da, T.; Ozcan, A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 2017, 7, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lyu, M.; Situ, G. eHoloNet: A learning-based end-to-end approach for in-line digital holographic reconstruction. Opt. Express 2018, 26, 22603–22614. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yair, R.; Zhang, Y.; Wei, Z.; Harun, G.; Xing, L.; Aydogan, O. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica 2018, 5, 704–710. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Wei, Z.; Rivenson, Y.; Haan, K.D.; Ozcan, A. Deep learning-based color holographic microscopy. J. Biophotonics 2019, 12, e201900107. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Bian, Y.; Wang, H.; Meng, L.; Pedrini, G.; Osten, W.; Barbastathis, G.; Situ, G. Phase imaging with an untrained neural network. Light Sci. Appl. 2020, 9, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; David, C.; Chong, W.; Guymer, R.H.; Li, S.; Sina, F. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed. Opt. Express 2017, 8, 2732–2744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.; Bui, V.; Nehmetallah, G. Computational optical tomography using 3-D deep convolutional neural networks. Opt. Eng. 2018, 57, 043111. [Google Scholar]
- Shuai, L.; Mo, D.; Justin, L.; Ayan, S.; George, B. Imaging through glass diffusers using densely connected convolutional networks. Optica 2018, 5, 803–813. [Google Scholar]
- Yang, M.; Liu, Z.H.; Cheng, Z.D.; Xu, J.S.; Li, C.F.; Guo, G.C. Deep Hybrid Scattering Image Learning. J. Phys. D Appl. Phys. 2018, 52, 115105. [Google Scholar] [CrossRef] [Green Version]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep Image Prior. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Bertolotti, J.; Putten, E.; Blum, C.; Lagendijk, A.; Mosk, A.P. Non-invasive imaging through opaque scattering layers. Nature 2012, 491, 232–234. [Google Scholar] [CrossRef]
- Katz, O.; Heidmann, P.; Fink, M.; Gigan, S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 2014, 8, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Porat, A.; Andresen, E.R.; Rigneault, H.; Oron, D. Widefield lensless imaging through a fiber bundle via speckle correlations. Opt. Express 2016, 24, 16835–16855. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L. Generalization of the Wiener-Khinchin theorem. IEEE Signal Process. Lett. 1998, 5, 292–294. [Google Scholar] [CrossRef]
- Fienup, J.R. Phase retrieval algorithms: A comparison. Appl. Opt. 1982, 21, 2758–2769. [Google Scholar] [CrossRef] [Green Version]
- Miao, J. Extending the methodology of X-ray crystallography to allow imaging of micorometre-sized non-crystaalin speciments. Nature 1999, 400, 342–344. [Google Scholar] [CrossRef]
- Kuschmierz, R.; Scharf, E.; Ortegón-González, D.; Glosemeyer, T.; Czarske, J.W. Ultra-thin 3D lensless fiber endoscopy using diffractive optical elements and deep neural networks. Light Adv. Manuf. 2021, 2, 415–424. [Google Scholar] [CrossRef]
- Pohle, D.; Rothe, S.; Koukourakis, N.; Czarske, J.J.O.L. Surveillance of few-mode fiber-communication channels with a single hidden layer neural network. Opt. Lett. 2022, 47, 1275–1278. [Google Scholar] [CrossRef]
- Li, X.; Li, R.; Zhao, Y.; Zhao, J. An improved model training method for residual convolutional neural networks in deep learning. Multimed. Tools Appl. 2021, 80, 6811–6821. [Google Scholar] [CrossRef]
- Zhu, S.; Guo, E.; Gu, J.; Bai, L.; Han, J. Imaging through unknown scattering media based on physics-informed learning. Photonics Res. 2021, 9, B210–B219. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, M.; Zhu, J.; Zheng, R.; Wu, Q. A Randomized Block-Coordinate Adam online learning optimization algorithm. Neural Comput. Appl. 2020, 32, 12671–12684. [Google Scholar] [CrossRef]
- Kayed, M.; Anter, A.; Mohamed, H. Classification of Garments from Fashion MNIST Dataset Using CNN LeNet-5 Architecture. In Proceedings of the 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE), Aswan, Egypt, 8–9 February 2020. [Google Scholar]
Dot Number | 8 | 15 | 20 |
SNR (dB) | 12.09 | 12.94 | 11.08 |
SSIM | 0.47 | 0.49 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, R.; Zhang, X.; Ma, X.; Qi, L.; Li, L.; Jiang, X. Enhancement of Imaging Quality of Interferenceless Coded Aperture Correlation Holography Based on Physics-Informed Deep Learning. Photonics 2022, 9, 967. https://doi.org/10.3390/photonics9120967
Xiong R, Zhang X, Ma X, Qi L, Li L, Jiang X. Enhancement of Imaging Quality of Interferenceless Coded Aperture Correlation Holography Based on Physics-Informed Deep Learning. Photonics. 2022; 9(12):967. https://doi.org/10.3390/photonics9120967
Chicago/Turabian StyleXiong, Rui, Xiangchao Zhang, Xinyang Ma, Lili Qi, Leheng Li, and Xiangqian Jiang. 2022. "Enhancement of Imaging Quality of Interferenceless Coded Aperture Correlation Holography Based on Physics-Informed Deep Learning" Photonics 9, no. 12: 967. https://doi.org/10.3390/photonics9120967
APA StyleXiong, R., Zhang, X., Ma, X., Qi, L., Li, L., & Jiang, X. (2022). Enhancement of Imaging Quality of Interferenceless Coded Aperture Correlation Holography Based on Physics-Informed Deep Learning. Photonics, 9(12), 967. https://doi.org/10.3390/photonics9120967