Poincaré Beams at the Tight Focus: Inseparability, Radial Spin Hall Effect, and Reverse Energy Flow
Abstract
:1. Introduction
2. Inseparability of Vector and Spatial Degrees of Freedom
3. Flow Energy at the Tight Focus of the Poincaré Beam
4. Spin Angular Momentum at the Tight Focus of Poincaré Beams
5. Orbital Angular Momentum at the Tight Focus of Poincaré Beams
6. Numerical Modeling
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouwmeester, D.; Pan, J.W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Experimental quantum teleportation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1998, 356, 1733–1737. [Google Scholar] [CrossRef] [Green Version]
- Fickler, R.; Campbell, G.; Buchler, B.; Lam, P.K.; Zeilinger, A. Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl. Acad. Sci. USA 2016, 113, 13642–13647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckley, A.M.; Brown, T.G.; Alonso, M.A. Full Poincaré beams. Opt. Express 2010, 18, 10777. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, X.; Liu, Y.; Ling, X.; Luo, H.; Wen, S. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. Opt. Lett. 2014, 39, 5274–5276. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Q. Cylindrical vector beams: From mathematical concepts to applications. Adv. Opt. Photonics 2009, 1, 1–57. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Nalimov, A.G. Energy density and energy flux in the focus of an optical vortex: Reverse flux of light energy. Opt. Lett. 2018, 43, 2921–2924. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Stafeev, S.S.; Kovalev, A.A. Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area. Opt. Express 2019, 27, 16689–16702. [Google Scholar] [CrossRef]
- Leyder, C.; Romanelli, M.; Karr, J.P.; Giacobino, E.; Liew, T.C.H.; Glazov, M.M.; Kavokin, A.V.; Malpuech, G.; Bramati, A. Observation of the optical spin hall effect. Nat. Phys. 2007, 3, 628–631. [Google Scholar] [CrossRef]
- Yin, X.; Ye, Z.; Rho, J.; Wang, Y.; Zhang, X. Photonic spin hall effect at metasurfaces. Science 2013, 339, 1405–1407. [Google Scholar] [CrossRef] [Green Version]
- Nath Baitha, M.; Kim, K. All angle polarization-independent photonic spin Hall effect. Opt. Laser Technol. 2022, 156, 108458. [Google Scholar] [CrossRef]
- Li, S.-M.; Chen, J. Spin Hall effect of reflected light from an air-glass interface around the Brewster’s angle. Appl. Phys. Lett. 2012, 100, 071109. [Google Scholar] [CrossRef]
- Roy, B.; Ghosh, N.; Banerjee, A.; Gupta, S.D.; Roy, S. Manifestations of geometric phase and enhanced spin Hall shifts in an optical trap. New J. Phys. 2014, 16, 083037. [Google Scholar] [CrossRef]
- Kumar, R.N.; Yatish; Gupta, S.D.; Ghosh, N.; Banerjee, A. Probing the rotational spin-Hall effect in a structured Gaussian beam. Phys. Rev. A 2022, 105, 023503. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, X.-X.; Ling, X.-H.; Chen, S.-Z.; Luo, H.-L.; Wen, S.-C. Orbit-orbit interaction and photonic orbital Hall effect in reflection of a light beam. Chin. Phys. B 2014, 23, 064215. [Google Scholar] [CrossRef]
- He, Y.; Xie, Z.; Yang, B.; Chen, X.; Liu, J.; Ye, H.; Zhou, X.; Li, Y.; Chen, S.; Fan, D. Controllable photonic spin Hall effect with phase function construction. Photonics Res. 2020, 8, 963. [Google Scholar] [CrossRef]
- Fu, S.; Guo, C.; Liu, G.; Li, Y.; Yin, H.; Li, Z.; Chen, Z. Spin-orbit optical hall effect. Phys. Rev. Lett. 2019, 123, 243904. [Google Scholar] [CrossRef]
- Ling, X.; Zhou, X.; Huang, K.; Liu, Y.; Qiu, C.-W.; Luo, H.; Wen, S. Recent advances in the spin Hall effect of light. Rep. Prog. Phys. 2017, 80, 066401. [Google Scholar] [CrossRef] [Green Version]
- Ling, X.; Yi, X.; Zhou, X.; Liu, Y.; Shu, W.; Luo, H.; Wen, S. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. Appl. Phys. Lett. 2014, 105, 151101. [Google Scholar] [CrossRef] [Green Version]
- Kotlyar, V.V.; Kovalev, A.A.; Stafeev, S.S.; Zaitsev, V.D. Index of the polarization singularity of Poincare beams. Bull. Russ. Acad. Sci. Phys. 2022, 86, 1158–1163. [Google Scholar] [CrossRef]
- Borges, C.V.S.; Hor-Meyll, M.; Huguenin, J.A.O.; Khoury, A.Z. Bell-like inequality for the spin-orbit separability of a laser beam. Phys. Rev. A 2010, 82, 033833. [Google Scholar] [CrossRef]
- Otte, E.; Rosales-Guzmán, C.; Ndagano, B.; Denz, C.; Forbes, A. Entanglement beating in free space through spin–orbit coupling. Light Sci. Appl. 2018, 7, 18009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaren, M.; Konrad, T.; Forbes, A. Measuring the nonseparability of vector vortex beams. Phys. Rev. A 2015, 92, 023833. [Google Scholar] [CrossRef] [Green Version]
- Volyar, A.V.; Shvedov, V.G.; Fadeeva, T.A. Structure of a nonparaxial Gaussian beam near the focus: III stability, eigenmodes, and vortices. Opt. Spectr. 2001, 91, 235–245. [Google Scholar] [CrossRef]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. A Math. Phys. Eng. Sci. 1959, 253, 358–379. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Ostrovskaya, E.A.; Alonso, M.A.; Rodríguez-Herrera, O.G.; Lara, D.; Dainty, C. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express 2011, 19, 26132. [Google Scholar] [CrossRef] [Green Version]
- Bliokh, K.Y.; Bekshaev, A.Y.; Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 2014, 5, 3300. [Google Scholar] [CrossRef] [Green Version]
- Dooghin, A.V.; Kundikova, N.D.; Liberman, V.S.; Zel’Dovich, B.Y. Optical Magnus effect. Phys. Rev. A 1992, 45, 8204. [Google Scholar] [CrossRef]
- Fadeyeva, T.A.; Rubass, A.F.; Volyar, A.V. Transverse shift of a high-order paraxial vortex-beam induced by a homogeneous anisotropic medium. Phys. Rev. A 2009, 79, 053815. [Google Scholar] [CrossRef] [Green Version]
- Bliokh, K.Y.; Bliokh, Y.P. Optical Magnus effect as a consequence of Berry phase anisotropy. JEPT Lett. 2004, 79, 519–522. [Google Scholar] [CrossRef]
- Gu, Z.; Yin, D.; Gu, F.; Zhang, Y.; Nie, S.; Feng, S.; Ma, J.; Yuan, C. Generation of concentric perfect Poincaré beams. Sci. Rep. 2019, 9, 15301. [Google Scholar] [CrossRef]
- Liu, M.; Huo, P.; Zhu, W.; Zhang, C.; Zhang, S.; Song, M.; Zhang, S.; Zhou, Q.; Chen, L.; Lezec, H.J.; et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat. Commun. 2021, 12, 2230. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, D.; Roux, F.S.; Dudley, A.; Litvin, I.; Piccirillo, B.; Marrucci, L.; Forbes, A. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics 2016, 10, 327–332. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotlyar, V.V.; Stafeev, S.S.; Zaitsev, V.D.; Telegin, A.M. Poincaré Beams at the Tight Focus: Inseparability, Radial Spin Hall Effect, and Reverse Energy Flow. Photonics 2022, 9, 969. https://doi.org/10.3390/photonics9120969
Kotlyar VV, Stafeev SS, Zaitsev VD, Telegin AM. Poincaré Beams at the Tight Focus: Inseparability, Radial Spin Hall Effect, and Reverse Energy Flow. Photonics. 2022; 9(12):969. https://doi.org/10.3390/photonics9120969
Chicago/Turabian StyleKotlyar, Victor V., Sergey S. Stafeev, Vladislav D. Zaitsev, and Alexey M. Telegin. 2022. "Poincaré Beams at the Tight Focus: Inseparability, Radial Spin Hall Effect, and Reverse Energy Flow" Photonics 9, no. 12: 969. https://doi.org/10.3390/photonics9120969
APA StyleKotlyar, V. V., Stafeev, S. S., Zaitsev, V. D., & Telegin, A. M. (2022). Poincaré Beams at the Tight Focus: Inseparability, Radial Spin Hall Effect, and Reverse Energy Flow. Photonics, 9(12), 969. https://doi.org/10.3390/photonics9120969