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Abstract: In this paper, using a Richards–Wolf method, which describes the behavior of electromag-
netic waves at the sharp focus, we show that high-order spin and orbital Hall effects take place at the
focal plane of tightly focused laser beams. We reveal that four local subwavelength regions are formed
at the focus of a linearly polarized optical vortex with unit topological charge, where the spin angular
momentum behaves in a special way. Longitudinal projections of the spin angular momentum are
oppositely directed in the adjacent regions. We conclude that this is because photons falling into the
neighboring regions at the focus have the opposite spin. This newly observed phenomenon may be
called a spin Hall effect of the 4-th order. We also show that tightly focusing the superposition of
cylindrical vector beams of the m-th and zero-order produces 2m subwavelength regions in the focal
plane, such that longitudinal projections of the orbital angular momentum are oppositely directed
in the neighboring regions. This occurs because photons falling into the neighboring regions at the
focus have the opposite signs of the on-axis projections of the orbital angular momentum. This
phenomenon may be termed an orbital Hall effect of the 2m-th order.

Keywords: Hall effect; spin-to-orbital conversion; optical vortex; cylindrical vortex beam; orbital
angular momentum; spin angular momentum; Richards–Wolf formalism

1. Introduction

The Hall effect in optics and photonics has been known since 2004 [1]. In two prior
papers [2,3], the theory of the Hall effect for light was developed. In later studies [4,5], the
Hall effect in optics was experimentally discovered. Several reviews dealing with the Hall
effect in photonics have been published [6,7]. In optics, the role of electrons with different
spins is played by photons with left or right circular polarization. Therefore, instead of
the quantum Hall effect, which consists of the spatial separation in the magnetic field
of particles with different charges and different spins, the Hall effect in optics relates to
the spatial separation of (i) right- and left-hand circularly polarized beams or (ii) of light
beams with different-sign orbital angular momenta (OAM). The first case is termed the
spin Hall effect [8,9], and the second one is the orbital Hall effect [10,11]. Usually, the Hall
effect in optics is observed when light is reflected from a medium interface [11] or when it
passes through multilayer media [4], crystals [12], or a metasurface [13]. At the same time,
publications concerned with the Hall effect at the tight focus of laser light [14,15] or in the
focal plane vicinity [16] are rather sparse.

In this paper, using the Richards–Wolf method [17], it is theoretically and numeri-
cally shown that high-order spin and orbital Hall effects are also observed at the tight
focus of both linearly polarized vortex laser beams and vortex-free beams that represent
superposition of beams with azimuthal polarization of the m-th and zero order.

2. Spin Hall Effect at the Tight Focus of a Circularly Polarized Optical Vortex

Let us analyze the characteristics of the electromagnetic field when tightly focusing a
circularly polarized optical vortex. Projections of the electric field of circularly and linearly
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polarized optical vortices were obtained from Ref. [18], but no expressions for a longitudinal
projection of the spin angular momentum (SAM), which indicates the presence of circular
(or elliptical) polarization at the tight focus, were given. In this section, we obtain an
expression for the longitudinal projection of the SAM for a circularly polarized optical
vortex with topological charge m. We consider the initial light electric field with the Jones
vector in the form

E =
A(θ)eimϕ

√
2

(
1
σi

)
, (1)

where σ = 1 denotes right-handed circular, σ = −1 left-handed circular, and σ = 0 linear
polarization. A(θ) is any real function that describes the input field amplitude, which has
radial symmetry. For convenience, we take projections of the electric field near the tight
focus of an aplanatic optical system from Ref. [18]:

Ex = − im+1
√

2
eimϕ

(
I0,m + γ+ei2ϕ I2,m+2 + γ−e−i2ϕ I2,m−2

)
,

Ey = im√
2

eimϕ
(
σI0,m − γ+ei2ϕ I2,m+2 + γ−e−i2ϕ I2,m−2

)
,

Ez = −2 im√
2

eimϕ
(
γ+eiϕ I1,m+1 − γ−e−iϕ I1,m−1

)
,

(2)

where

Iν,µ =

(
4π f

λ

) θ0∫
0

sinν+1
(

θ

2

)
cos3−ν

(
θ

2

)
cos1/2(θ)A(θ)eikz cos θ Jµ(x)dθ. (3)

In these equations, f is the focal length of the aplanatic system, λ is the wavelength,
NA = sin θ0 is the numerical aperture, Jµ(x) is the first-kind Bessel function of the µ-th order,
x = kr sin θ, (r, ϕ, z) are cylindrical coordinates, γ± = (1 ± σ)/2, k is the wave number. A
Gaussian and Bessel–Gaussian function or a constant value (plane wave) can be used as
A(θ). The spin density vector of the SAM vector is given by

S =
1

16πω
Im(E ∗ ×E), (4)

where ω is the angular frequency of light. Further, the constant 1/(16πω) will be ignored.
It can be seen from (4) that the longitudinal SAM component (with the constant being
neglected) coincides with the unnormalized third component of the Stokes vector s3:

s3 = Sz = 2Im
(
E∗x Ey

)
. (5)

Substituting the projections of the electric field (2) into (5), we obtain:

Sz =
(

σI2
0,m − γ2

+ I2
2,m+2 + γ2

− I2
2,m−2

)
+ cos(2ϕ)(γ+ I2,m+2(σ− 1) + γ− I2,m−2(σ + 1)). (6)

From Equation (6), the expression for the longitudinal SAM projection of a right-
handed circularly polarized optical vortex (σ = 1, γ2

+ = 1, γ2
− = 0) can be given as

Sz+ = I2
0,m − I2

2,m+2. (7)

It can be seen from (7) that near the optical axis, Sz+ > 0 (right-handed circular
polarization) since I2

0,m > I2
2,m+2, and there will be left circular polarization on those radii

where I2
0,m < I2

2,m+2, since Sz+ < 0. The separation of left- and right-handed polarization
states between different-radius circles centered on the optical axis is a manifestation of the
radial spin Hall effect. Interestingly, the Hall effect also appears for a non-vortex beam
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(m = 0). For the initial left-handed circular polarization (σ = −1, γ2
+ = 0, γ2

− = 1), from
Equation (6), instead of (7), we obtain the following:

Sz− = −I2
0,m + I2

2,m−2. (8)

It follows from (8) that at m = 0, near the optical axis, Sz− < 0 (left-handed circular
polarization) since I2

0,0 > I2
2,−2 = I2

2,2, and there will be right-handed circular polarization
on those radii where I2

0,0 < I2
2,2, since Sz− > 0. We note that at m 6= 0, the near-axis

polarization state cannot be determined unambiguously. For example, at m = 2, instead of
(8), we can write Sz− = −I2

0,2 + I2
2,0 > 0. That is, although the initial field has a left-handed

circular polarization, the focused field is right-handed circularly polarized on the optical
axis. Such an anomalous behavior of polarization is because at m = 2, the energy flow
(Poynting vector) has a negative near-axis longitudinal projection, meaning that there is a
reverse energy flow [19]. The alternating handedness of the polarization vector rotation
(the Hall effect), depending on the radial variable, also occurs for left-handed circularly
polarized source vortex fields.

3. Spin-Orbital Hall Effect at the Tight Focus of a Linearly Polarized Optical Vortex

In this section, we consider a vortex field with linear polarization along the x-axis. In
this case, the longitudinal component of the SAM vector does not have circular symmetry
(σ = 0, γ2

+ = γ2
− = 1):

SzL =
1
2
(I2,m−2 − I2,m+2)(I2,m−2 + I2,m+2 + cos(2ϕ)I0,m). (9)

For definiteness, we write (9) for m = 1:

SzL1 = −1
2
(I2,1 + I2,3)(−I2,1 + I2,3 + cos(2ϕ)I0,1). (10)

It follows from (10) that at ϕ = 0 and ϕ = π, the longitudinal SAM component is
negative near the optical axis (being equal to zero on the optical axis),SzL1 < 0, and at
ϕ = π/2 and ϕ = 3π/2, it is positive, SzL1 > 0, since (I2,1 + I2,3) > 0, (−I2,1 + I2,3− I0,1) < 0.
It is noteworthy that according to (9), at m = 0 (a non-vortex beam), the light field is linearly
polarized in the entire focal plane, since SzL0 = 0. This means that the presence of the
first-order optical vortex (m = 1) in a linearly polarized beam leads to the formation of four
subwavelength regions at the focus that are characterized by alternating handedness of
polarization states, with two regions having left-handed circular polarization and the other
two having right-handed circular polarization. This distribution of the spin density at the
focus may be interpreted as a variant of the spin Hall effect. Below, we demonstrate that
the theoretical predictions are confirmed by the numerical simulation.

4. Spin-Orbital Hall Effect at the Focus of Superposition of a Cylindrical Vector Beam
and a Linearly Polarized Beam

The Hall effect for the superposition of a beam with m-th order radial polarization
and a beam with linear polarization along the horizontal axis was shown in Ref. [20]. The
superimposed beams were supposed to be in the same phase. It was shown in Ref. [20] that,
although the source field of the superposition had zero longitudinal SAM projection (spin-
less field), 2m subwavelength regions with oppositely rotating (clock- or counterclockwise)
transverse energy flows were formed at the focus for odd m. In this section, we show that
the superposition of a beam with m-th order azimuthal polarization and a linearly polarized
field in antiphase produces a nonzero longitudinal SAM component in the initial plane.
In this case, local regions with oppositely rotating vectors of polarization and transverse
energy flow are formed at the focus at even values of m. This is a demonstration of the
spin-orbital Hall effect at the focus.
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Let us analyze a source light field with the Jones vector given by

E = A(θ)

(
− sin(mϕ)

ia + cos(mϕ)

)
= A(θ)

[(
− sin(mϕ)
cos(mϕ)

)
+ ia

(
0
1

)]
, Ima = 0 (11)

where (r, ϕ) are the polar coordinates in the initial plane and a is a real number.
It can be seen from (11) that the source field is an on-axis superposition of a light field

with the m-th order azimuthal polarization [21] and a field linearly polarized along the
y-axis. Further, using the Richards–Wolf formalism [17], projections of the electric and
magnetic field vectors at the tight focus of an aplanatic system for the initial beam (11) can
be obtained as follows:

Ex = im+1(I0,m sin(mϕ) + I2,m−2 sin((m− 2)ϕ)) + aI2,2 sin(2ϕ),
Ey = −im+1(I0,m cos(mϕ)− I2,m−2 cos((m− 2)ϕ)) + a(I0,0 − I2,2 cos(2ϕ)),
Ez = −2im I1,m−1 sin((m− 1)ϕ)− 2iaI1,1 sin(ϕ),
Hx = im+1(I0,m cos(mϕ) + I2,m−2 cos((m− 2)ϕ))− a(I0,0 + I2,2 cos(2ϕ)),
Hy = im+1(I0,m sin(mϕ)− I2,m−2 sin((m− 2)ϕ))− aI2,2 sin(2ϕ),
Hz = −2im I1,m−1 cos((m− 1)ϕ) + 2iaI1,1 cos(ϕ).

(12)

The on-axis projection of the SAM vector (5) for the field (12) at the focus can be
written as

Sz =


2a(−1)p[sin(mϕ)(I0,0 I0,m − I2,2 I2,m−2)+
+ sin((m− 2)ϕ)(I0,0 I2,m−2 − I2,2 I0,m)], m = 2p,
0, m = 2p + 1, p = 0, 1, 2, . . .

(13)

It can be seen from (13) that the longitudinal SAM projection of the field (11) at the
focus is nonzero only for even numbers m, provided that the real parameter a is nonzero.
The expressions inside the parentheses in (13) take a constant value on a circle of radius
r, centered at the optical axis, since all functions Iµ,ν depend only on the radial variable r.
Therefore, the SAM projection changes sign 2m times around this circle. That is, there are
2m local regions in the focal plane in which the elliptical (or circular) polarization changes
the rotation direction. The light has right-handed circular polarization in those regions
where Sz > 0 and left-handed circular polarization in those regions where Sz < 0. Thus, the
regions with right- and left-handed elliptical or circular polarization are separated at the
focus of the field (11) with even m. This is a demonstration of the spin Hall effect of the
m-th order.

Further, we show that the orbital Hall effect of the m-th order also takes place at the
focus of the field (11). To do so, using projections of the electric and magnetic fields (12),
we calculate the transverse projections of the Poynting vector:

P =
c

2π
Re(E ∗ ×H), (14)

where E and H are vectors of electric and magnetic fields, * is complex conjugation, × is
vector multiplication, and c is the speed of light in a vacuum. Moving forward, the constant
c/(2π) is neglected. Substituting (12) into (14), we obtain transverse projections of the
energy flow vector:

Px =


2a(−1)p[cos((m− 1)ϕ)(I1,1 I2,m−2 − I0,0 I1,m−1)+
+cos((m + 1)ϕ)(I2,2 I1,m−1 − I1,1 I0,m)], m = 2p,
0, m = 2p + 1, p = 0, 1, 2, 3, . . .

Py =


2a(−1)p[− sin((m− 1)ϕ)(I1,1 I2,m−2 − I0,0 I1,m−1)+
+ sin((m + 1)ϕ)(I2,2 I1,m−1 − I1,1 I0,m)], m = 2p,
0, m = 2p + 1, p = 0, 1, 2, 3, . . .

(15)

It follows from (15) that both projections of the Poynting vector change sign 2(m + 1)
around a circle of some radius centered on the optical axis when expressions within the
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parentheses are constant. This means that centers of 2m local subwavelength regions, in
which the transverse energy flow rotates along a closed trajectory, are located at the focus
on a certain circle centered on the optical axis. Moreover, in the neighboring regions, the
rotation occurs in opposite directions (clockwise and counterclockwise). Thus, we have
shown that transverse energy flows rotating in opposite directions are separated at the
tight focus of the field (11). We call this phenomenon an orbital Hall effect of the m-th order.

5. Numerical Simulation
5.1. Hall Effect at the Focus of a Linearly Polarized Optical Vortex

The focusing of an optical vortex with a unit topological charge (m = 1) and linear
polarization along the x-axis was simulated by the Richards–Wolf integral method [17],
which is commonly employed for analyzing the dynamical characteristics of the light field
at the tight focus. Note, however, that this is not the only method suitable for simulation
purposes [22]. The wavelength was λ = 532 nm, and the numerical aperture of an aplanatic
objective was NA = 0.95.

It can be seen from Figure 1 that the spin density has the form of a Maltese cross, in the
upper and lower parts of which the light has right-handed circular (elliptical) polarization
since Sz > 0, and in the left and right parts of the cross, the light has left-handed circular
(elliptical) polarization since Sz < 0.
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Figure 1. Distribution of the longitudinal SAM component, Sz, calculated using Equation (5) at the
focus of an aplanatic objective with NA = 0.95 illuminated by an optical vortex (m = 1) with linear
polarization along the x-axis.

5.2. Hall Effect at the Focus of a Beam with Hybrid Polarization

Using the Richards–Wolf formulas, the focusing of a beam (11), which is a superposi-
tion of a cylindrical vector beam of the m-th order and a plane wave with linear polarization
along the y-axis, was simulated. The wavelength was λ = 532 nm, the order of azimuthal
polarization was m = 4, and the parameter a was equal to 1. Focusing was performed with
a flat diffractive lens with NA = 0.95.

Figure 2a shows the beam intensity (11) at the focus. It can be seen that the focal spot
is an ellipse extended along the polarization axis y. Furthermore, the intensity in Figure 2
has six side lobes determined by the longitudinal component (Figure 2c). The transverse
intensity distribution (Figure 2b) has 2m = 8 isolated intensity nulls (where the energy flow
is zero). The transverse energy flow rotates along a closed trajectory (Figure 3) around
these zeros.
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Figure 2. Distributions of the (a) total intensity for the initial field (11) I=|Ex|2+|Ey|2+|Ez|2 and
components thereof: (b) transverse |Ex|2+|Ey|2 and (c) longitudinal |Ez|2 in the focal plane
(m = 4, a = 1). (d) Schematic arrangement of the polarization vectors of the source field, with the
opposite-handed vectors depicted by different colors.
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Figure 3. Intensity distribution and direction and magnitude (arrows) of the transverse energy flow
Pxi+Pyj, calculated using (14), at the focus.

Figure 3 shows an intensity pattern (same as in Figure 2a) and the direction and
magnitude (marked by arrows) of the transverse energy flow Pxex+Pyey, where ex, ey are
the unit vectors of the Cartesian system in the focal plane. It can be seen from Figure 3 that
2m = 8 local subwavelength regions with a 200–300 nm diameter formed at the focus. These
regions are centered on a certain circle drawn around the optical axis and pass through the
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intensity zeros surrounding the focal spot. In each of these regions, the transverse energy
flow rotates along a closed trajectory. In the neighboring regions, the rotation directions are
different. That is, the on-axis OAM projection has a different sign in the neighboring regions.
Such a separation in space of transverse energy flows rotating in different directions is a
demonstration of the orbital Hall effect of the 2m-th order.

6. Conclusions

Summing up, using the Richards–Wolf formalism, which adequately describes the
behavior of a vector light field at the tight focus, we have shown that if the focal length is
much greater than the wavelength, then at the focus of a circularly polarized optical vortex,
regions of different-handedness (left- and right-handed) circular polarization are found on
different-radius circles centered on the optical axis. That is, photons that fall into focus at
different distances from the optical axis have different spins: either left- or right-handed
circular polarization. Such an effect can be called the radial spin Hall effect.

We have also shown by using the Richards–Wolf formalism that at the tight focus
of a linearly polarized optical vortex with unit topological charge, there are four local
subwavelength regions about 200 nm in size (for a 532-nm wavelength and NA = 0.95),
with the spin being directed oppositely in the neighboring regions. That is, in two verti-
cally adjacent regions, the longitudinal SAM projection is positive (right-handed elliptical
polarization), and in two horizontally adjacent regions, the longitudinal SAM projection
is negative (left-handed circular or elliptical polarization). Such a spatial separation of
regions with opposite spins at the focus can be called a spin Hall effect of the 4-th order.

We have also shown that at the tight focus of the superposition of cylindrical vector
beams with m and zero orders, 2m local regions are formed, with the transverse energy
flow rotating in the opposite directions in the neighboring regions. That is, the longitudinal
OAM component has different signs in the neighboring regions. This is the orbital Hall
effect of the 2m-th order.

These effects arise at the focus due to the conservation of the angular momentum of the
beam and due to the spin-to-orbital conversion. In the first example of a linearly polarized
optical vortex, the SAM is zero both in the initial plane and at the tight focus. However, in
this case, an even number of local subwavelength regions have been shown to occur at the
focus, in which the SAM is nonzero and has the opposite signs in the neighboring regions.
In this case, the Hall effect occurs due to the orbital-to-spin conversion. In the second
example, the superposition of two non-vortex cylindrical beams of the mth and 0th order
has zero OAM and non-zero SAM in the source plane. At the focus, 2m subwavelength
regions are formed, in which the OAM is nonzero, taking different signs in the neighboring
regions. The total OAM at the focus remains zero. In this case, the Hall effect appears due
to the spin-to-orbital conversion.
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