Scaling Law of THz Yield from Two-Color Femtosecond Filament for Fixed Pump Power
Abstract
:1. Introduction
2. Model
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McKelvy, M.L.; Britt, T.R.; Davis, B.L.; Gillie, J.K.; Lentz, L.A.; Leugers, A.; Nyquist, R.A.; Putzig, C.L. Infrared spectroscopy. Anal. Chem. 1996, 68, 93–160. [Google Scholar] [CrossRef]
- Fuji, T.; Shirai, H.; Nomura, Y. Ultrabroadband mid-infrared spectroscopy with four-wave difference frequency generation. J. Opt. 2015, 17, 094004. [Google Scholar] [CrossRef]
- Woodbury, D.; Feder, L.; Shumakova, V.; Gollner, C.; Schwartz, R.; Miao, B.; Salehi, F.; Korolov, A.; Pugžlys, A.; Baltuška, A.; et al. Laser wakefield acceleration with mid-IR laser pulses. Opt. Lett. 2018, 43, 1131–1134. [Google Scholar] [CrossRef]
- Balcou, P.; Cornaggia, C.; Gomes, A.; Lompre, L.; L’Huillier, A. Optimizing high-order harmonic generation in strong fields. J. Phys. B 1992, 25, 4467. [Google Scholar] [CrossRef]
- Kohler, M.C.; Pfeifer, T.; Hatsagortsyan, K.Z.; Keitel, C.H. Frontiers of atomic high-harmonic generation. In Advances in Atomic, Molecular, and Optical Physics; Elsevier: Amsterdam, The Netherlands, 2012; Volume 61, pp. 159–208. [Google Scholar]
- Kartashov, D.; Ališauskas, S.; Andriukaitis, G.; Pugžlys, A.; Shneider, M.; Zheltikov, A.; Chin, S.L.; Baltuška, A. Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 2012, 86, 033831. [Google Scholar] [CrossRef]
- Panov, N.A.; Shipilo, D.E.; Saletsky, A.M.; Liu, W.; Polynkin, P.G.; Kosareva, O.G. Nonlinear transparency window for ultraintense femtosecond laser pulses in the atmosphere. Phys. Rev. A 2019, 100, 023832. [Google Scholar] [CrossRef] [Green Version]
- Clerici, M.; Peccianti, M.; Schmidt, B.E.; Caspani, L.; Shalaby, M.; Giguere, M.; Lotti, A.; Couairon, A.; Légaré, F.; Ozaki, T.; et al. Wavelength scaling of terahertz generation by gas ionization. Phys. Rev. Lett. 2013, 110, 253901. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.; Hochstrasser, R. Intense terahertz pulses by four-wave rectification in air. Opt. Lett. 2000, 25, 1210–1212. [Google Scholar] [CrossRef]
- Fedorov, V.Y.; Tzortzakis, S. Extreme THz fields from two-color filamentation of midinfrared laser pulses. Phys. Rev. A 2018, 97, 063842. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.; de Alaiza Martínez, P.G.; Thiele, I.; Skupin, S.; Bergé, L. Broadband terahertz radiation from two-color mid-and far-infrared laser filaments in air. Phys. Rev. A 2018, 97, 063839. [Google Scholar] [CrossRef]
- Jang, D.; Schwartz, R.M.; Woodbury, D.; Griff-McMahon, J.; Younis, A.H.; Milchberg, H.M.; Kim, K.Y. Efficient terahertz and Brunel harmonic generation from air plasma via mid-infrared coherent control. Optica 2019, 6, 1338. [Google Scholar] [CrossRef]
- Mitrofanov, A.; Sidorov-Biryukov, D.; Nazarov, M.; Voronin, A.; Rozhko, M.; Shutov, A.; Ryabchuk, S.; Serebryannikov, E.; Fedotov, A.; Zheltikov, A. Ultraviolet-to-millimeter-band supercontinua driven by ultrashort mid-infrared laser pulses. Optica 2020, 7, 15. [Google Scholar] [CrossRef]
- Koulouklidis, A.D.; Gollner, C.; Shumakova, V.; Fedorov, V.Y.; Pugžlys, A.; Baltuška, A.; Tzortzakis, S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat. Commun. 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, X.; Ropagnol, X.; Ovchinnikov, A.; Chefonov, O.; Ushakov, A.; Garcia-Rosas, C.; Isgandarov, E.; Agranat, M.; Ozaki, T.; Savel’ev, A. Observation of crossover from intraband to interband nonlinear terahertz optics. Opt. Lett. 2018, 43, 5463–5466. [Google Scholar] [CrossRef] [PubMed]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Liu, J.; Dai, J.; Chin, S.L.; Zhang, X.C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photon. 2010, 4, 627–631. [Google Scholar] [CrossRef]
- Nguyen, A.; Kaltenecker, K.; Delagnes, J.C.; Zhou, B.; Cormier, E.; Fedorov, N.; Bouillaud, R.; Descamps, D.; Thiele, I.; Skupin, S.; et al. Wavelength scaling of terahertz pulse energies delivered by two-color air plasmas. Opt. Lett. 2019, 44, 1488–1491. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, L.; Huang, S.; Zhang, S.; Zhang, C. Terahertz wave generation from noble gas plasmas induced by a wavelength-tunable femtosecond laser. IEEE Trans. THz Sci. Tech. 2018, 8, 299–304. [Google Scholar] [CrossRef]
- Fedorov, V.Y.; Tzortzakis, S. Optimal wavelength for two-color filamentation-induced terahertz sources. Opt. Express 2018, 26, 31150. [Google Scholar] [CrossRef]
- Kim, K.Y.; Glownia, J.H.; Taylor, A.J.; Rodriguez, G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express 2007, 15, 4577–4584. [Google Scholar] [CrossRef]
- Dai, J.; Karpowicz, N.; Zhang, X.C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett. 2009, 103, 023001. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, W.; Shi, Y.; Lu, P.; Pan, H.; Zeng, H. Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses. Appl. Phys. Lett. 2012, 101, 161104. [Google Scholar] [CrossRef]
- Solyankin, P.M.; Nikolaeva, I.A.; Angeluts, A.A.; Shipilo, D.E.; Minaev, N.V.; Panov, N.A.; Balakin, A.V.; Zhu, Y.; Kosareva, O.G.; Shkurinov, A.P. THz generation from laser-induced breakdown in pressurized molecular gases: On the way to terahertz remote sensing of the atmospheres of Mars and Venus. New J. Phys. 2020, 22, 013039. [Google Scholar] [CrossRef]
- Nikolaeva, I.; Shipilo, D.; Panov, N.; Kosareva, O. Dual-wavelength filamentation with a fraction of fundamental laser frequency as a wideband THz source. Laser Phys. Lett. 2021, 18, 025401. [Google Scholar] [CrossRef]
- Kolesik, M.; Moloney, J.V. Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations. Phys. Rev. E 2004, 70, 036604. [Google Scholar] [CrossRef] [PubMed]
- Borodin, A.V.; Panov, N.A.; Kosareva, O.G.; Andreeva, V.A.; Esaulkov, M.N.; Makarov, V.A.; Shkurinov, A.P.; Chin, S.L.; Zhang, X.C. Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases. Opt. Lett. 2013, 38, 1906. [Google Scholar] [CrossRef]
- Brown, J.M.; Couairon, A.; Gaarde, M.B. Ab initio calculations of the linear and nonlinear susceptibilities of N2, O2, and air in midinfrared laser pulses. Phys. Rev. A 2018, 97, 063421. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Chin, S.L. Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air. Opt. Express 2005, 13, 5750. [Google Scholar] [CrossRef]
- Zahedpour, S.; Wahlstrand, J.; Milchberg, H. Measurement of the nonlinear refractive index of air constituents at mid-infrared wavelengths. Opt. Lett. 2015, 40, 5794–5797. [Google Scholar] [CrossRef] [Green Version]
- Rae, S.; Burnett, K. Detailed simulations of plasma-induced spectral blueshifting. Phys. Rev. A 1992, 46, 1084. [Google Scholar] [CrossRef]
- Shipilo, D.; Nikolaeva, I.; Fedorov, V.Y.; Tzortzakis, S.; Couairon, A.; Panov, N.; Kosareva, O. Tight focusing of electromagnetic fields by large-aperture mirrors. Phys. Rev. E 2019, 100, 033316. [Google Scholar] [CrossRef] [PubMed]
- Mokrousova, D.; Savinov, S.; Seleznev, L.; Rizaev, G.; Koribut, A.; Mityagin, Y.A.; Ionin, A.; Nikolaeva, I.; Shipilo, D.; Panov, N.; et al. Tracing air-breakdown plasma characteristics from single-color filament terahertz spectra. J. Infrared Milli Thz Waves 2020, 41, 1105–1113. [Google Scholar] [CrossRef]
- Zhang, Z.; Panov, N.; Andreeva, V.; Zhang, Z.; Slepkov, A.; Shipilo, D.; Thomson, M.; Wang, T.J.; Babushkin, I.; Demircan, A.; et al. Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air. Appl. Phys. Lett. 2018, 113, 241103. [Google Scholar] [CrossRef]
- Andreeva, V.; Kosareva, O.; Panov, N.; Shipilo, D.; Solyankin, P.; Esaulkov, M.; de Alaiza Martínez, P.G.; Shkurinov, A.; Makarov, V.; Bergé, L.; et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma. Phys. Rev. Lett. 2016, 116, 063902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokrousova, D.; Savinov, S.; Rizaev, G.; Shipilo, D.; Panov, N.; Seleznev, L.; Mityagin, Y.A.; Ionin, A.; Shkurinov, A.; Kosareva, O. Terahertz emission from a single-color ultraviolet filament. Laser Phys. Lett. 2019, 16, 105403. [Google Scholar] [CrossRef]
- Fedotov, A.B.; Koroteev, N.I.; Loy, M.; Xiao, X.; Zheltikov, A.M. Saturation of third-harmonic generation in a plasma of self-induced optical breakdown due to the self-action of 80-fs light pulses. Opt. Commun. 1997, 133, 587–595. [Google Scholar] [CrossRef]
- Mitrofanov, A.V.; Voronin, A.A.; Sidorov-Biryukov, D.A.; Pugžlys, A.; Stepanov, E.A.; Andriukaitis, G.; Ališauskas, S.; Flöry, T.; Fedotov, A.B.; Baltuška, A.; et al. Mid-infrared laser filaments in the atmosphere. Sci. Rep. 2015, 5, 8368. [Google Scholar] [CrossRef] [Green Version]
- Kartashov, D.; Ališauskas, S.; Pugžlys, A.; Voronin, A.A.; Zheltikov, A.M.; Baltuška, A. Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: Beyond the fifth-order nonlinearity. Opt. Lett. 2012, 37, 2268. [Google Scholar] [CrossRef] [Green Version]
- Theberge, F.; Liu, W.; Luo, Q.; Chin, S.L. Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses. Appl. Phys. B 2005, 80, 221–225. [Google Scholar] [CrossRef]
- Panov, N.A.; Shipilo, D.E.; Andreeva, V.A.; Kosareva, O.G.; Saletsky, A.M.; Xu, H.; Polynkin, P. Supercontinuum of a 3.9-μ m filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption. Phys. Rev. A 2016, 94, 041801. [Google Scholar] [CrossRef]
- Panagiotopoulos, P.; Kolesik, M.; Tochitsky, S.; Koch, S.W.; Moloney, J.V. Two-stage filamentation of 10 μm pulses as a broadband infrared backlighter in the atmosphere. Opt. Lett. 2019, 44, 3122–3125. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaeva, I.A.; Shipilo, D.E.; Panov, N.A.; Liu, W.; Savel’ev, A.B.; Kosareva, O.G. Scaling Law of THz Yield from Two-Color Femtosecond Filament for Fixed Pump Power. Photonics 2022, 9, 974. https://doi.org/10.3390/photonics9120974
Nikolaeva IA, Shipilo DE, Panov NA, Liu W, Savel’ev AB, Kosareva OG. Scaling Law of THz Yield from Two-Color Femtosecond Filament for Fixed Pump Power. Photonics. 2022; 9(12):974. https://doi.org/10.3390/photonics9120974
Chicago/Turabian StyleNikolaeva, Irina A., Daniil E. Shipilo, Nikolay A. Panov, Weiwei Liu, Andrei B. Savel’ev, and Olga G. Kosareva. 2022. "Scaling Law of THz Yield from Two-Color Femtosecond Filament for Fixed Pump Power" Photonics 9, no. 12: 974. https://doi.org/10.3390/photonics9120974
APA StyleNikolaeva, I. A., Shipilo, D. E., Panov, N. A., Liu, W., Savel’ev, A. B., & Kosareva, O. G. (2022). Scaling Law of THz Yield from Two-Color Femtosecond Filament for Fixed Pump Power. Photonics, 9(12), 974. https://doi.org/10.3390/photonics9120974