Simulation on Secondary Electron Multiplication Behavior of the Microchannel Plate under DC Mode
Abstract
:1. Introduction
2. Theoretical Model for Simulation
2.1. Construction of a 3D Single Channel Model
2.2. Simulation of Secondary Electron Multiplication Behavior in Microchannels
2.2.1. Theoretical Model of Electron Multiplication
2.2.2. Theoretical Simulation Solver
3. Simulation Results and Discussion
3.1. Electric Field Distribution in the Channel
3.2. Simulation of Electron Multiplication Process in the Channel
3.2.1. Electron Motion Trajectory
3.2.2. Electron Multiplication at Different Transit Times
3.3. Influence of Structural Parameters on Electron Multiplication
3.3.1. Penetration Depth of MCP Output Electrode
3.3.2. Bias Angle
3.3.3. Length-to-Diameter Ratio
3.4. Influence of Bias Voltage on Electron Multiplication
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martindale, A.; Lapington, J.S.; Fraser, G.W. Photon counting with small pore microchannel plates. Nucl. Instrum. Methods Phys. Res. Sect. A 2007, 573, 111–114. [Google Scholar] [CrossRef]
- Lu, N.; Yang, Y.; Lv, J.; Pan, J.; Liang, M.; Wang, X.; Li, Y. Neutron Detector Design Based on ALD Coated MCP. Phys. Procedia 2012, 26, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Litvinov, Y.A.; Uesaka, T.; Xu, H.S. Storage ring mass spectrometry for nuclear structure and astrophysics research. Phys. Scr. 2016, 91, 073002. [Google Scholar] [CrossRef] [Green Version]
- Fraser, G.W.; Pearson, J.F. The direct detection of thermal neutrons by imaging microchannel-plate detectors. Nucl. Instrum. Methods Phys. Res. Sect. A. 1990, 293, 569–574. [Google Scholar] [CrossRef]
- Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S. Photon-counting H33D detector for biological fluorescence imaging. Nucl. Instrum. Methods Phys. Res. Sect. A 2006, 567, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Then, A.M.; Pantano, C.G. Formation and behavior of surface layers on electron emission glasses. Non-Cryst. Solids 1990, 120, 178–187. [Google Scholar] [CrossRef]
- Huang, Y. Study on Electronic Properties and Conductive Mechanism of Microchannel Plates. Doctoral Dissertation, China Building Academy, Beijing, China, 2014. [Google Scholar]
- Huang, Y.; Gu, Z.; Zhang, Y.; Liu, H.; Li, G. Nano-scale morphology on micro-channel plate lead silicate glass surface. Chin. Ceram. Soc. 2012, 40, 994–999. [Google Scholar] [CrossRef]
- Chang, Z. The First Collision problem of a MCP gain model. Acta. Photon. Sin. 1995, 24, 318–323. [Google Scholar]
- Chang, Z. Numeric Modelling of the MCP characteristics gated by ps pulse. Acta. Photon. Sin. 1995, 24, 347–353. [Google Scholar]
- Cai, H.; Liu, J.; Niu, L.; Liao, H.; Zhou, J. Theoretical simulation of electron transit time and gain characteristics in microchannel plate. HPLPB 2009, 21, 1542–1546. [Google Scholar]
- Wei, Y. Monte Carlo simulation and computation of single channel multiplying parameters in MCP. J. Electron. Inf. Technol. 1992, 14, 76–80. [Google Scholar]
- Cai, H.; Liu, J.; Peng, X.; Niu, L.; Gu, L. Monte Carlo simulation for spatial resolution of MCP framing tube. J. Shenzhen Univ. Sci. Eng. 2012, 29, 85–90. [Google Scholar] [CrossRef]
- Deng, P.; Lin, K.; Luo, Q.; Long, J.; Wang, D.; Lei, Y.; Huang, J.; Wang, Y.; Cai, H.; Liu, J.; et al. Study on gain uniformity of microchannel plate online first. Laser Optoelectron. Progress 2022. Accepted. [Google Scholar]
- Chen, L.; Wang, X.; Tian, J.; Zhao, T.; Liu, C.; Liu, H.; Wei, Y.; Sai, X.; Wang, X.; Sun, J.; et al. The Gain and Time Characteristics of Microchannel Plates in Various Channel Geometries. IEEE Trans. Nucl. Sci. 2017, 64, 1080–1086. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, S.; Zhao, T.; Yan, B.; Wang, P.; Yu, Y.; Lei, X.; Yang, L.; Wen, K.; Qi, M.; et al. Single electron counting using a dual MCP assembly. Res. Sect. 2016, 830, 438–443. [Google Scholar] [CrossRef]
- Wu, M.; Kruschwitz, C.A.; Morgan, D.V.; Morgan, J. Monte Carlo simulations of microchannel plate detectors. I. Steady-state voltage bias results. Rev. Sci. Instrum. 2008, 79, 073104. [Google Scholar] [CrossRef] [Green Version]
- Kruschwitz, C.A.; Wu, M.; Rochau, G.A. Monte Carlo simulations of microchannel plate detectors. II. Pulsed voltage results. Rev. Sci. Instrum. 2011, 82, 023102. [Google Scholar] [CrossRef]
- Yao, W.; Liu, S.; Yan, B.; Zhao, G.; Dong, Y.; Wang, Z.; Zhu, K.; Zhang, B.; Wen, K.; Wang, Y. Study on Electron Source of Cold Cathode Plane and the Dynamic Range of Low Resistance MCP. Infrared Technol. 2022, 44, 310–314. [Google Scholar]
- Furman, M.A.; Pivi, M.T. Probabilistic model for the simulation of secondary electron emission. Phys. Rev. Accel. Beams 2002, 5, 124404. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Xin, L.; Li, L.; Gou, Y.; Tian, J. Effects of secondary electron emission yield properties on gain and timing performance of ALD-coated MCP. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1005, 165369. [Google Scholar] [CrossRef]
- Tskhakaya, D. The Particle-in-Cell Method. In Computational Many-Particle Physics; Fehske, H., Schneider, R., Weiße, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 161–189. [Google Scholar]
- Pan, J. Microchannel plates and its main characteristics. J. Appl. Opt. 2004, 5, 25–29. [Google Scholar]
- Nobuyoshi, K. Output Electron Energy Distribution of Microchannel Plates: Effects of Output Electrode Structure. Rev. Sci. Instrum. 1986, 57, 354. [Google Scholar]
- Nobuyoshi, K.; Masato, H. Absolute ion detection efficiencies of microchannel plates and funnel microchannel plates for multi-coincidence detection. Rev. Sci. Instrum. 1985, 56, 1329. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Tian, J.; Liu, C.; Liu, H.; Chen, P.; Wei, Y.; Sai, X.; Sun, J.; Si, S.; et al. Simulation of the effects of coated material SEY property on output electron energy distribution and gain of microchannel plates. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 840, 133–138. [Google Scholar] [CrossRef]
- Rochau, G.A.; Bailey, J.E.; Chandler, G.A.; Nash, T.J.; Nielsen, D.S.; Dunham, G.S.; Garcia, O.F.; Joseph, N.R.; Keister, J.W.; Madlener, M.J. Energy dependent sensitivity of microchannel plate detectors. Rev. Sci. Instrum. 2006, 77, 667. [Google Scholar] [CrossRef]
- Gatti, E.; Oba, K.; Rehak, P. Study of the Electric Field inside Microchannel Plate Multipliers. IEEE Trans. Nucl. Sci. 1982, 30, 461–468. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Jiang, D.; Jiao, P.; Sun, Y.; Huang, Y. Simulation on Secondary Electron Multiplication Behavior of the Microchannel Plate under DC Mode. Photonics 2022, 9, 978. https://doi.org/10.3390/photonics9120978
Li F, Jiang D, Jiao P, Sun Y, Huang Y. Simulation on Secondary Electron Multiplication Behavior of the Microchannel Plate under DC Mode. Photonics. 2022; 9(12):978. https://doi.org/10.3390/photonics9120978
Chicago/Turabian StyleLi, Fengyan, Dongyu Jiang, Peng Jiao, Yong Sun, and Yonggang Huang. 2022. "Simulation on Secondary Electron Multiplication Behavior of the Microchannel Plate under DC Mode" Photonics 9, no. 12: 978. https://doi.org/10.3390/photonics9120978
APA StyleLi, F., Jiang, D., Jiao, P., Sun, Y., & Huang, Y. (2022). Simulation on Secondary Electron Multiplication Behavior of the Microchannel Plate under DC Mode. Photonics, 9(12), 978. https://doi.org/10.3390/photonics9120978