A Simple Photonic System for DFS and AOA Simultaneous Measurement
Abstract
:1. Introduction
2. Principle and Method
3. Experiment Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Patole, S.M.; Torlak, M.; Wang, D.; Ali, M. Automotive radars: A review of signal processing techniques. IEEE Signal Process. Mag. 2017, 34, 22–35. [Google Scholar] [CrossRef]
- Ghelfi, P.; Laghezza, F.; Scotti, F.; Serafino, G.; Capria, A.; Pinna, S.; Onori, D.; Porzi, C.; Scaffardi, M.; Malacarne, A.; et al. A fully photonics-based coherent radar system. Nature 2014, 507, 341–345. [Google Scholar] [CrossRef]
- Capmany, J.; Novak, D. Microwave photonics combines two worlds. Nat. Photon 2007, 1, 319–330. [Google Scholar] [CrossRef]
- Pan, S.; Yao, J. Photonics-Based Broadband Microwave Measurement. J. Light. Technol. 2017, 35, 3498–3513. [Google Scholar] [CrossRef]
- Zou, X.; Lu, B.; Pan, W.; Yan, L.; Stöhr, A.; Yao, J. Photonics for microwave measurements. Laser Photonics Rev. 2016, 10, 711–734. [Google Scholar] [CrossRef] [Green Version]
- Emami, H.; Hajihashemi, M.; Alavi, S.E. Standalone Microwave Photonics Doppler Shift Estimation System. J. Light. Technol. 2016, 34, 3596–3602. [Google Scholar] [CrossRef]
- Gao, Y.; Kang, B.; Chen, Y.; Zhao, Y.; Zhang, W.; Fan, Y. A Simple and All-Optical Microwave Doppler Frequency Shift and Phase Measurement System Based on Sagnac Loop and I/Q Detection. IEEE Trans. Instrum. Meas. 2021, 70, 5500809. [Google Scholar] [CrossRef]
- Yang, Y.; Du, C.; Wang, D.; Wang, M.; Dong, W. Simple Doppler Frequency Shift Measurement Scheme Based on Microwave Photonics. IEEE Photonics Technol. Lett. 2022, 34, 67–70. [Google Scholar] [CrossRef]
- Lu, B.; Pan, W.; Zou, X.; Yan, X.; Yan, L.; Luo, B. Wideband Doppler frequency shift measurement and direction ambiguity resolution using optical frequency shift and optical heterodyning. Opt. Lett. 2015, 40, 2321–2324. [Google Scholar] [CrossRef]
- Zuo, P.; Chen, Y. Photonic-Assisted Filter-Free Microwave Doppler Frequency Shift Measurement Using a Fixed Low-Frequency Reference Signal. J. Light. Technol. 2020, 38, 4333–4340. [Google Scholar] [CrossRef]
- Chen, Y.; Zuo, P.; Shi, T.; Chen, Y. Photonic-enabled Doppler frequency shift measurement for weak echo signals based on optical single sideband mixing using a fixed low-frequency reference. J. Lightw. Technol. 2021, 39, 3121–3129. [Google Scholar] [CrossRef]
- Chen, W.; Wen, A.; Li, X.; Gao, Y.; Wang, Y.; Xiang, S.; He, H.; Zheng, H. Wideband Doppler Frequency Shift Measurement and Direction Discrimination Based on a DPMZM. IEEE Photonics J. 2017, 9, 5501008. [Google Scholar] [CrossRef]
- Vidal, B.; Piqueras, M.A.; Marti, J. Direction-of-arrival estimation of broadband microwave signals in phased-array antennas using photonic techniques. J. Lightw. Technol. 2016, 24, 2741–2745. [Google Scholar] [CrossRef]
- Tu, Z.; Wen, A.; Xiu, Z.; Zhang, W.; Chen, M. Angle-of-arrival es- timation of broadband microwave signals based on microwave photonic filtering. IEEE Photon. J. 2017, 9, 5503208. [Google Scholar]
- Chen, H.; Chan, E.H.W. Angle-of-arrival measurement system using double RF modulation technique. IEEE Photon. J. 2019, 11, 7200110. [Google Scholar] [CrossRef]
- Cao, Z.; van den Boom, H.P.A.; Lu, R.; Wang, Q.; Tangdiongga, E.; Koonen, A.M.J. Angle-of-arrival measurement of a microwave signal using parallel optical delay detector. IEEE Photon. Technol. Lett. 2013, 25, 1932–1935. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, Q.; Lu, R.; van den Boom, H.P.A.; Tangdiongga, E.; Koonen, A.M.J. Phase modulation parallel optical delay detector for microwave angle-of-arrival measurement with accuracy monitored. Opt. Lett. 2014, 39, 1497–1500. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chan, E.H.W. Simple approach to measure angle of arrival of a microwave signal. IEEE Photon. Technol. Lett. 2019, 31, 1795–1798. [Google Scholar] [CrossRef]
- Chen, H.; Chan, E.H.W. Photonics-based CW/pulsed microwave signal AOA measurement system. J. Lightw. Technol. 2020, 38, 2292–2298. [Google Scholar] [CrossRef]
- Chen, H.; Huang, C.; Chan, E.H.W. Photonic approach for measuring AOA of multiple signals with improved measurement accuracy. IEEE Photon. J. 2020, 12, 7201810. [Google Scholar] [CrossRef]
- Li, P.; Yan, L.; Ye, J.; Feng, X.; Pan, W.; Luo, B.; Zou, X.; Zhou, T.; Chen, Z. Photonic approach for simultaneous measurements of Doppler-frequency-shift and angle-of-arrival of microwave signals. Opt. Express 2019, 27, 8709–8716. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tang, Z.; Pan, S. Photonic approach for simultaneous measurement of microwave DFS and AOA. Appl. Opt. 2021, 60, 4622–4626. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, H.; Wen, A. A Photonic Approach for Doppler-Frequency-Shift and Angle-of-Arrival Measurement Without Direction Ambiguity. J. Light. Technol. 2021, 39, 1688–1695. [Google Scholar] [CrossRef]
- Jia, Q.; Li, J.; Sun, L.; Li, D.; Liu, J. A Simple Photonics-Based Measurement Method for Microwave DFS and AOA. IEEE Photonics J. 2022, 14, 5532108. [Google Scholar] [CrossRef]
- Huang, C.; Chen, H.; Chan, E.H.W. Simple photonics-based system for Doppler frequency shift and angle of arrival measurement. Opt. Express 2020, 28, 14028–14037. [Google Scholar] [CrossRef]
- Cao, X.H.; Fan, X.J.; Li, G.Y.; Li, M.; Zhu, N.H.; Li, W. A Filterless Photonic Approach for DFS and AOA Measurement Using a Push-Pull DPol-MZM. IEEE Photonics Technol. Lett. 2022, 34, 19–22. [Google Scholar] [CrossRef]
- Li, G.; Shi, D.; Wang, L.; Li, M.; Zhu, N.; Li, W. Photonic System for Simultaneous and Unambiguous Measurement of Angle-of-Arrival and Doppler-Frequency-Shift. J. Light. Technol. 2022, 40, 2321–2328. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Tao, J.; Li, J.; Jia, Q.; Wang, C.; Liu, J. A Simple Photonic System for DFS and AOA Simultaneous Measurement. Photonics 2022, 9, 980. https://doi.org/10.3390/photonics9120980
Li X, Tao J, Li J, Jia Q, Wang C, Liu J. A Simple Photonic System for DFS and AOA Simultaneous Measurement. Photonics. 2022; 9(12):980. https://doi.org/10.3390/photonics9120980
Chicago/Turabian StyleLi, Xintong, Jinming Tao, Jinye Li, Qianqian Jia, Chaoquan Wang, and Jianguo Liu. 2022. "A Simple Photonic System for DFS and AOA Simultaneous Measurement" Photonics 9, no. 12: 980. https://doi.org/10.3390/photonics9120980
APA StyleLi, X., Tao, J., Li, J., Jia, Q., Wang, C., & Liu, J. (2022). A Simple Photonic System for DFS and AOA Simultaneous Measurement. Photonics, 9(12), 980. https://doi.org/10.3390/photonics9120980