Non-Mechanical Multiplexed Beam-Steering Elements Based on Double-Sided Liquid Crystal Metasurfaces
Abstract
:1. Introduction
2. Main Idea, Design and Optimization
2.1. Advantages of Spectral and Diffractive Multiplexing
2.2. Optimization of Multiplexed Elements
3. Experimental Multiplexed Elements
3.1. Fabrication
3.2. Diffraction Efficiency Measurements
3.3. Switching Speed
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BFP | Back focal plane |
FIB | Focused ion beam |
ITO | Indium tin oxide |
LC | Liquid crystal |
LiDAR | Light detection and ranging |
POM | Polarizing optical microscopy |
References
- Chan, V.W.S. Free-Space Optical Communications. J. Light. Technol. 2006, 24, 4750–4762. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Q.; Feng, S.; Zuo, C. Microscopic fringe projection profilometry: A review. Opt. Lasers Eng. 2020, 135, 106192. [Google Scholar] [CrossRef]
- Behroozpour, B.; Sandborn, P.A.M.; Wu, M.C.; Boser, B.E. Lidar System Architectures and Circuits. IEEE Commun. Mag. 2017, 55, 135–142. [Google Scholar] [CrossRef]
- McManamon, P.F.; Bos, P.J.; Escuti, M.J.; Heikenfeld, J.; Serati, S.; Xie, H.; Watson, E.A. A Review of Phased Array Steering for Narrow-Band Electrooptical Systems. Proc. IEEE 2009, 97, 1078–1096. [Google Scholar] [CrossRef]
- Li, N.; Ho, C.P.; Xue, J.; Lim, L.W.; Chen, G.; Fu, Y.H.; Lee, L.Y.T. A Progress Review on Solid-State LiDAR and Nanophotonics-Based LiDAR Sensors. Laser Photonics Rev. 2022, 16, 2100511. [Google Scholar] [CrossRef]
- He, Z.; Gou, F.; Chen, R.; Yin, K.; Zhan, T.; Wu, S.T. Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments. Crystals 2019, 9, 292. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.; Jones, C.; Nagaraj, M. Liquid Crystal Devices for Beam Steering Applications. Micromachines 2021, 12, 247. [Google Scholar] [CrossRef]
- Lio, G.E.; Ferraro, A. LIDAR and Beam Steering Tailored by Neuromorphic Metasurfaces Dipped in a Tunable Surrounding Medium. Photonics 2021, 8, 65. [Google Scholar] [CrossRef]
- Wang, X. Performance evaluation of a liquid-crystal-on-silicon spatial light modulator. Opt. Eng. 2004, 43, 2769. [Google Scholar] [CrossRef]
- Manko, A.; Kim, Y.; Morozov, A.; Palto, S.; Won, K.; Lee, H.S. Optimization of Optical Phase Profile in Beam Deflector with Advanced Simulation Method for High Diffraction Efficiency. Micromachines 2022, 13, 802. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Z.; Wu, S.T. High-Precision Beam Angle Expander Based on Polymeric Liquid Crystal Polarization Lenses for LiDAR Applications. Crystals 2022, 12, 349. [Google Scholar] [CrossRef]
- Li, H.; Zhou, C.; Lee, W.B.; Choi, D.Y.; Lee, S.S. Flat telescope based on an all-dielectric metasurface doublet enabling polarization-controllable enhanced beam steering. Nanophotonics 2021, 11, 405–413. [Google Scholar] [CrossRef]
- Shang, X.; Tan, J.Y.; Willekens, O.; Smet, J.D.; Joshi, P.; Cuypers, D.; Islamaj, E.; Beeckman, J.; Neyts, K.; Vervaeke, M.; et al. Electrically Controllable Liquid Crystal Component for Efficient Light Steering. IEEE Photonics J. 2015, 7, 1–13. [Google Scholar] [CrossRef]
- Shang, X.; Trinidad, A.M.; Joshi, P.; Smet, J.D.; Cuypers, D.; Smet, H.D. Tunable Optical Beam Deflection Via Liquid Crystal Gradient Refractive Index Generated By Highly Resistive Polymer Film. IEEE Photonics J. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Nersisyan, S.R.; Tabiryan, N.V.; Steeves, D.M.; Kimball, B.R. The Promise of Diffractive Waveplates. Opt. Photonics News 2010, 21, 40. [Google Scholar] [CrossRef]
- Nys, I.; Stebryte, M.; Ussembayev, Y.Y.; Beeckman, J.; Neyts, K. Tilted Chiral Liquid Crystal Gratings for Efficient Large-Angle Diffraction. Adv. Opt. Mater. 2019, 7, 1901364. [Google Scholar] [CrossRef]
- Kim, J.; Oh, C.; Serati, S.; Escuti, M.J. Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings. Appl. Opt. 2011, 50, 2636. [Google Scholar] [CrossRef]
- Kasyanova, I.V.; Gorkunov, M.V.; Artemov, V.V.; Geivandov, A.R.; Mamonova, A.V.; Palto, S.P. Liquid Crystal Metasurfaces on Micropatterned Polymer Substrates. Opt. Express 2018, 26, 20258–20269. [Google Scholar] [CrossRef]
- Gorkunov, M.V.; Kasyanova, I.V.; Artemov, V.V.; Ezhov, A.A.; Mamonova, A.V.; Simdyankin, I.V.; Palto, S.P. Liquid-Crystal Metasurfaces Self-Assembled on Focused Ion Beam Patterned Polymer Layers: Electro-Optical Control of Light Diffraction and Transmission. ACS Appl. Mater. Interfaces 2020, 12, 30815–30823. [Google Scholar] [CrossRef]
- Gorkunov, M.V.; Kasyanova, I.V.; Artemov, V.V.; Ezhov, A.A.; Mamonova, A.V.; Simdyankin, I.V.; Palto, S.P. Superperiodic Liquid-Crystal Metasurfaces for Electrically Controlled Anomalous Refraction. ACS Photonics 2020, 7, 3096–3105. [Google Scholar] [CrossRef]
- Artemov, V.V.; Khmelinin, D.N.; Mamonova, A.V.; Gorkunov, M.V.; Ezhov, A.A. Microscopic Studies of Alignment Layers Processed by a Focused Ion Beam for the Creation of Liquid Crystal Metasurfaces. Crystallogr. Rep. 2021, 66, 673–681. [Google Scholar] [CrossRef]
- Kasyanova, I.V.; Gorkunov, M.V.; Palto, S.P. Liquid-crystal metasurfaces: Self-assembly for versatile optical functionality. Europhys. Lett. 2021, 136, 24001. [Google Scholar] [CrossRef]
- Gorkunov, M.V.; Mamonova, A.V.; Kasyanova, I.V.; Ezhov, A.A.; Artemov, V.V.; Simdyankin, I.V.; Geivandov, A.R. Double-sided liquid crystal metasurfaces for electrically and mechanically controlled broadband visible anomalous refraction. Nanophotonics 2022, 11, 3901–3912. [Google Scholar] [CrossRef]
- Blinov, L.M. Structure and Properties of Liquid Crystals; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Pestov, S.; Vill, V. Liquid Crystals. In Springer Handbook of Materials Data; Springer: Cham, Switzerland, 2018; pp. 959–991. [Google Scholar] [CrossRef]
- König, T.A.F.; Ledin, P.A.; Kerszulis, J.; Mahmoud, M.A.; El-Sayed, M.A.; Reynolds, J.R.; Tsukruk, V.V. Electrically tunable pasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 2014, 8, 6182–6192. [Google Scholar] [CrossRef] [PubMed]
- Tkachenko, V.; Abbate, G.; Marino, A.; Vita, F.; Giocondo, M.; Mazzulla, A.; Ciuchi, F.; Stefano, L.D. Nematic Liquid Crystal Optical Dispersion in the Visible-Near Infrared Range. Mol. Cryst. Liq. Cryst. 2006, 454, 263665–271673. [Google Scholar] [CrossRef]
- Geivandov, A.R.; Kasyanova, I.V. Device for Alignment of Microstructures on Two Substrates with Micrometric Precision. Prib. Tekhnika Eksperimenta 2020, 6, 130–132. (In Russian) [Google Scholar] [CrossRef]
- Color Glass Spectral Transmittance. Available online: http://www.crystaltechno.com/Crystaltechno_Color_Glass_Spectral_Tramsmittance_2019_03_10.pdf (accessed on 8 December 2022).
- Zou, J.; Yang, Z.; Mao, C.; Wu, S.T. Fast-Response Liquid Crystals for 6G Optical Communications. Crystals 2021, 11, 797. [Google Scholar] [CrossRef]
- Bennis, N.; Jankowski, T.; Strzezysz, O.; Pakuła, A.; Zografopoulos, D.C.; Perkowski, P.; Sánchez-Pena, J.M.; López-Higuera, J.M.; Algorri, J.F. A high birefringence liquid crystal for lenses with large aperture. Sci. Rep. 2022, 12, 14603. [Google Scholar] [CrossRef]
- Sazegar, M.; Stevenson, R. Holographic Metasurface Antennas with Dynamic Beam Pointing and Polarization Control. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 1657–1658. [Google Scholar] [CrossRef]
Period | Stripes on Top Substrate | Stripes on Bottom Substrate |
---|---|---|
6 | (0.0, 3.7) (3.9, 4.1) (4.2, 4.5) (4.7, 4.8) | (0.0, 0.9) (1.0, 1.4) (1.7, 1.8) (1.9, 2.0) (2.3, 2.4) |
8 | (0.0, 5.9) (6.5, 6.7) (6.9, 7.0) | (0.0, 1.1) (1.3, 1.8 ) (2.2, 2.4) (2.7, 2.9) |
10 | (0.0, 6.4) (6.5, 6.7) (7.0 7.6) (7.8, 8.1) (8.3, 8.4) (8.8, 9.0) | (0.0, 1.5) (1.8, 2.4) (2.8, 3.0) (3.2, 3.3) (3.7, 3.8) (4.1, 4.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorkunov, M.V.; Geivandov, A.R.; Mamonova, A.V.; Simdyankin, I.V.; Kasyanova, I.V.; Ezhov, A.A.; Artemov, V.V. Non-Mechanical Multiplexed Beam-Steering Elements Based on Double-Sided Liquid Crystal Metasurfaces. Photonics 2022, 9, 986. https://doi.org/10.3390/photonics9120986
Gorkunov MV, Geivandov AR, Mamonova AV, Simdyankin IV, Kasyanova IV, Ezhov AA, Artemov VV. Non-Mechanical Multiplexed Beam-Steering Elements Based on Double-Sided Liquid Crystal Metasurfaces. Photonics. 2022; 9(12):986. https://doi.org/10.3390/photonics9120986
Chicago/Turabian StyleGorkunov, Maxim V., Artur R. Geivandov, Alena V. Mamonova, Ivan V. Simdyankin, Irina V. Kasyanova, Alexander A. Ezhov, and Vladimir V. Artemov. 2022. "Non-Mechanical Multiplexed Beam-Steering Elements Based on Double-Sided Liquid Crystal Metasurfaces" Photonics 9, no. 12: 986. https://doi.org/10.3390/photonics9120986
APA StyleGorkunov, M. V., Geivandov, A. R., Mamonova, A. V., Simdyankin, I. V., Kasyanova, I. V., Ezhov, A. A., & Artemov, V. V. (2022). Non-Mechanical Multiplexed Beam-Steering Elements Based on Double-Sided Liquid Crystal Metasurfaces. Photonics, 9(12), 986. https://doi.org/10.3390/photonics9120986