Visible to Mid-Infrared Supercontinuum Initiated by Stimulated Raman Scattering of 1.03 μm Ultrashort Pulses in a Gas-Filled Silica Fiber
Abstract
:1. Introduction
2. Materials and Methods
3. Dispersion and Waveguide Properties of the Revolver HCF
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Théberge, F.; Bérubé, N.; Poulain, S.; Cozic, S.; Châtigny, S.; Robichaud, L.-R.; Pleau, L.-P.; Bernier, M.; Vallée, R. Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers. Opt. Express 2018, 26, 13952–13960. [Google Scholar] [CrossRef]
- Gauthier, J.-C.; Robichaud, L.-R.; Fortin, V.; Vallee, R.; Bernier, M. Mid-infrared supercontinuum generation in fluoride fiber amplifiers: Current status and future perspectives. Appl. Phys. B 2018, 124, 122. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, B.; He, X.; Deng, K.; Liu, S.; Hou, J. 20.6 W Mid-Infrared Supercontinuum Generation in ZBLAN Fiber With Spectrum of 1.9–4.3 μm. J. Lightwave Technol. 2020, 38, 5122–5127. [Google Scholar] [CrossRef]
- Lemière, A.; Bizot, R.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Mathey, P.; Aquilina, C.; Béjot, P.; Billard, F.; Faucher, O.; et al. 1.7–18 μm mid-infrared supercontinuum generation in a dispersion engineered step-index chalcogenide fiber. Results Phys. 2021, 26, 104397. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, B.; Wang, X.; Pan, Z.; Liu, Z.; Zhang, P.; Shen, X.; Nie, Q.; Dai, S.; Wang, R. Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev. 2017, 11, 1700005. [Google Scholar] [CrossRef] [Green Version]
- Hudson, D.; Antipov, S.; Li, L.; Alamgir, I.; Hu, T.; Amraoui, M.E.; Messaddeq, Y.; Rochette, M.; Jackson, S.D.; Fuerbach, A. Toward all fibers upercontinuum spanning the mid-infrared. Optica 2017, 4, 1163–1166. [Google Scholar] [CrossRef]
- Venck, S.; St-Hilaire, F.; Brilland, L.; Ghosh, A.N.; Chahal, R.; Caillaud, C.; Meneghetti, M.; Troles, J.; Joulain, F.; Cozic, S.; et al. 2–10 μm mid-infrared fiber-based supercontinuum laser source: Experiment and simulation. Laser Photonics Rev. 2020, 14, 2000011. [Google Scholar] [CrossRef]
- Woyessa, G.; Kwarkye, K.; Dasa, M.K.; Petersen, C.R.; Sidharthan, R.; Chen, S.; Yoo, S.; Bang, O. Power stable 1.5–10.5 μm cascaded mid-infrared supercontinuum laser without thulium amplifier. Opt. Lett. 2021, 46, 1129–1132. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wheeler, N.V.; Couny, F.; Roberts, P.J.; Benabid, F. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett. 2011, 36, 669–671. [Google Scholar] [CrossRef]
- Pryamikov, A.D.; Biriukov, A.S.; Kosolapov, A.F.; Plotnichenko, V.G.; Semjonov, S.L.; Dianov, E.M. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. Opt. Express 2011, 19, 1441–1448. [Google Scholar] [CrossRef]
- Yu, F.; Wadsworth, W.J.; Knight, J.C. Low loss silica hollow core fibers for 3–4 μm spectral region. Opt. Express 2012, 20, 11153–11158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolyadin, A.N.; Kosolapov, A.F.; Pryamikov, A.D.; Biriukov, A.S.; Plotnichenko, V.G.; Dianov, E.M. Light transmission in negative curvature hollow core fiber in extremely high material loss region. Opt. Express 2013, 21, 9514–9519. [Google Scholar] [CrossRef] [PubMed]
- Debord, B.; Alharbi, M.; Vincetti, L.; Husakou, A.; Fourcade-Dutin, C.; Hoenninger, C.; Mottay, E.; Gérôme, F.; Benabid, F. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining. Opt. Express 2014, 22, 10735–10746. [Google Scholar] [CrossRef] [PubMed]
- Balciunas, T.; Fourcade-Dutin, C.; Fan, G.; Witting, T.; Voronin, A.A.; Zheltikov, A.M.; Gerome, F.; Paulus, G.G.; Baltuska, A.; Benabid, F. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat. Commun. 2015, 6, 6117. [Google Scholar] [CrossRef] [Green Version]
- Russell, P.S.J.; Hölzer, P.; Chang, W.; Abdolvand, A.; Travers, J.C. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photonics 2014, 8, 278. [Google Scholar] [CrossRef]
- Markos, C.; Travers, J.C.; Abdolvand, A.; Eggleton, B.J.; Bang, O. Hybrid photonic-crystal fiber. Rev. Mod. Phys. 2017, 89, 045003. [Google Scholar] [CrossRef] [Green Version]
- Debord, B.; Amrani, F.; Vincetti, L.; Gérôme, F.; Benabid, F. Hollow-Core Fiber Technology: The Rising of Gas Photonics. Fibers 2019, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Ermolov, A.; Mak, K.F.; Frosz, M.N.; Travers, J.C.; Russell, P.S.J. Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber. Phys. Rev. A 2015, 92, 033821. [Google Scholar] [CrossRef] [Green Version]
- Tani, F.; Travers, J.C.; Russell PSt, J. PHz-wide Supercontinua of Nondispersing Sub cycle Pulses Generated by Extreme Modulational Instability. Phys. Rev. Lett. 2013, 111, 033902. [Google Scholar] [CrossRef]
- Belli, F.; Abdolvand, A.; Chang, W.; Travers, J.C.; Russell PSt, J. Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica 2015, 2, 292. [Google Scholar] [CrossRef]
- Yatsenko, Y.P.; Pleteneva, E.N.; Okhrimchuk, A.G.; Gladyshev, A.V.; Kosolapov, A.F.; Kolyadin, A.N.; Bufetov, I.A. Multiband supercontinuum generation in an air-core revolver fibre. Quantum Electron. 2017, 47, 553–560. [Google Scholar] [CrossRef]
- Debord, B.; Maurel, M.; Gerome, F.; Vincetti, L.; Husakou, A.; Benabid, F. Strong nonlinear optical effects in micro-confined atmospheric air. Photon. Res. 2019, 7, 1134–1141. [Google Scholar] [CrossRef]
- Gao, S.-F.; Wang, Y.-Y.; Belli, F.; Brahms, C.; Wang, P.; Travers, J.C. From Raman frequency combs to supercontinuum generation in nitrogen-filled hollow-core anti-resonant fiber. Laser Photonics Rev. 2022, 16, 2100426. [Google Scholar] [CrossRef]
- Kergoustin, D.; Amrani, F.; Debord, B.; Gérôme, F.; Benabid, F. Multi-Octave Light Source with Tunable Spectral Profile: From Supercontinuum to Raman Comb Spectral-Structure. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 23–27 June 2019; p. 1. [Google Scholar] [CrossRef]
- Köttig, F.; Novoa, D.; Tani, F.; Günendi, M.C.; Cassataro, M.; Travers, J.C.; Russell PSt, J. Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion. Nat. Commun. 2017, 8, 813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassataro, M.; Novoa, D.; Günendi, M.C.; Edavalath, N.N.; Frosz, M.H.; Travers, J.C.; Russell PSt, J. Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF. Opt. Express 2017, 25, 7637–7644. [Google Scholar] [CrossRef] [Green Version]
- Deng, A.; Gavara, T.; Hassan, M.R.A.; Jin, Y.; Wang, Q.J.; Chang, W. Four-Octave-Spanning Mid-Infrared Supercontinuum Generation in a Gas-Filled Hollow-Core Fiber. In Conference on Lasers and Electro-Optics; Kang, J., Tomasulo, S., Ilev, I., Müller, D., Litchinitser, N., Polyakov, S., Podolskiy, V., Nunn, J., Dorrer, C., Fortier, T., et al., Eds.; OSA Technical Digest (Optical Society of America): Washington, DC, USA, 2021; p. STh5A.1. [Google Scholar] [CrossRef]
- Adamu, A.I.; Habib, M.S.; Petersen, C.R.; Lopez, J.E.A.; Zhou, B.; Schülzgen, A.; Bache, M.; Amezcua-Correa, R.; Bang, O.; Markos, C. Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber. Sci. Rep. 2019, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Gladyshev, A.; Yatsenko, Y.; Kolyadin, A.; Kompanets, V.; Bufetov, I. Mid-infrared 10-µJ-level sub-picosecond pulse generation via stimulated Raman scattering in a gas-filled revolver fiber. Opt. Mater. Express 2020, 10, 3081–3089. [Google Scholar] [CrossRef]
- Yatsenko, Y.P.; Gladyshev, A.V.; Bufetov, I.A. Mid-IR supercontinuum generation initiated by two-cascade stimulated Raman scattering in D2-filled revolver fibre. Quantum Electron. 2021, 51, 1068–1075. [Google Scholar] [CrossRef]
- Dudley, J.; Taylor, R. Supercontinuum Generation in Optical Fibers; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Ottush, J.J.; Rockwell, D.A. Measurement of raman gain coefficient of hydrogen, deuterium, andmethane. IEEE J. Quantum Electron. 1988, 24, 2076–2080. [Google Scholar] [CrossRef]
- Wahlstrand, J.K.; Zahedpour, S.; Cheng, Y.-H.; Palastro, J.P.; Mildberg, H.M. Absolute measurement of the ultrafast nonlinear electronic and rovibrational response in H2 and D2. Phys. Rev. A 2015, 92, 063828. [Google Scholar] [CrossRef] [Green Version]
- Stolen, R.H.; Gordon, J.P.; Tomlinson, W.J.; Haus, H.A. Raman response function of silica-core fibers. J. Opt. Soc. Am. B 1989, 6, 1159–1166. [Google Scholar] [CrossRef]
- Larsen, T. Refraktion und Dispersion des Deuteriums. Z. Phys. 1936, 100, 543–546. [Google Scholar] [CrossRef]
- Spence, D.J. Spectral effects of stimulated Raman scattering in crystals. Prog. Quantum Electron. 2017, 51, 1–45. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gladyshev, A.; Yatsenko, Y.; Kolyadin, A.; Bufetov, I. Visible to Mid-Infrared Supercontinuum Initiated by Stimulated Raman Scattering of 1.03 μm Ultrashort Pulses in a Gas-Filled Silica Fiber. Photonics 2022, 9, 997. https://doi.org/10.3390/photonics9120997
Gladyshev A, Yatsenko Y, Kolyadin A, Bufetov I. Visible to Mid-Infrared Supercontinuum Initiated by Stimulated Raman Scattering of 1.03 μm Ultrashort Pulses in a Gas-Filled Silica Fiber. Photonics. 2022; 9(12):997. https://doi.org/10.3390/photonics9120997
Chicago/Turabian StyleGladyshev, Alexey, Yury Yatsenko, Anton Kolyadin, and Igor Bufetov. 2022. "Visible to Mid-Infrared Supercontinuum Initiated by Stimulated Raman Scattering of 1.03 μm Ultrashort Pulses in a Gas-Filled Silica Fiber" Photonics 9, no. 12: 997. https://doi.org/10.3390/photonics9120997
APA StyleGladyshev, A., Yatsenko, Y., Kolyadin, A., & Bufetov, I. (2022). Visible to Mid-Infrared Supercontinuum Initiated by Stimulated Raman Scattering of 1.03 μm Ultrashort Pulses in a Gas-Filled Silica Fiber. Photonics, 9(12), 997. https://doi.org/10.3390/photonics9120997