Tunable Triple Plasmonically Induced Transparency in Triangular Cavities Coupled with an MDM Waveguide
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Theoretical Analysis of Structure
3.2. Theoretical Design of PIT
3.3. Realization of Tunable PIT
3.4. Temperature Analysis of PIT
Reference | Structure | S (nm/RIU) | ST (nm/°C) |
---|---|---|---|
[50] | Side-coupled hexagonal cavities | 917 | 0.45 |
[51] | All-metal metasurface | - | 0.27 |
[52] | Elliptical plasmonic waveguide resonator | 950 | 0.01 |
[53] | Defect resonator coupled with a waveguide | 652 | 0.225 |
[5] | Side-coupled rectangular cavity | 1271 | 0.47 |
[54] | Plasmonic waveguide system | 1330 | 0.12 |
This work | Two triangles coupled with waveguide | 933 | 0.29 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Jeong, J.; Goldflam, M.D.; Campione, S.; Briscoe, J.L.; Vabishchevich, P.P.; Nogan, J.; Sinclair, M.B.; Luk, T.S.; Brener, I. High Quality Factor Toroidal Resonances in Dielectric Metasurfaces. ACS Photonics 2020, 7, 1699–1707. [Google Scholar] [CrossRef]
- Ai, H.; Kang, Q.; Wang, W.; Guo, K.; Guo, Z. Multi-Beam Steering for 6G Communications Based on Graphene Metasurfaces. Sensors 2021, 21, 4784. [Google Scholar] [CrossRef] [PubMed]
- Moradiani, F.; Farmani, A.; Mozaffari, M.H.; Seifouri, M.; Abedi, K. Systematic engineering of a nanostructure plasmonic sensing platform for ultrasensitive biomaterial detection. Opt. Commun. 2020, 474, 126178. [Google Scholar] [CrossRef]
- Xie, L.; Gao, W.; Shu, J.; Ying, Y.; Kono, J. Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics. Sci. Rep. 2015, 5, 8671. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-K.; Kang, J.-H.; Lee, J.-S.; Kim, H.-S.; Kim, C.; Hun Kim, J.; Lee, T.; Son, J.-H.; Park, Q.H.; Seo, M. Highly sensitive and selective sugar detection by terahertz nano-antennas. Sci. Rep. 2015, 5, 15459. [Google Scholar] [CrossRef]
- Naheed, M.; Faryad, M. Excitation of surface plasmon–polariton waves at the interface of a metal and an isotropic chiral material in the prism-coupled configurations. Eur. Phys. J. Plus 2020, 135, 1–15. [Google Scholar] [CrossRef]
- Jeon, T.-I.; Grischkowsky, D. THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet. Appl. Phys. Lett. 2006, 88, 061113. [Google Scholar] [CrossRef] [Green Version]
- Saxler, J.; Rivas, J.G.; Janke, C.; Pellemans, H.P.M.; Bolívar, P.H.; Kurz, H. Time-domain measurements of surface plasmon polaritons in the terahertz frequency range. Phys. Rev. B 2004, 69, 155427. [Google Scholar] [CrossRef]
- Martl, M.; Darmo, J.; Unterrainer, K.; Gornik, E. Excitation of terahertz surface plasmon polaritons on etched groove gratings. J. Opt. Soc. Am. B 2009, 26, 554–558. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, M. Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits. Light. Sci. Appl. 2015, 4, e294. [Google Scholar] [CrossRef] [Green Version]
- Fleischhauer, M. Electromagnetically induced transparency and coherent-state preparation in optically thick media. Opt. Express 1999, 4, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Fleischhauer, A.; Lukin, M.D.; Mair, A.; Phillips, D.F.; Walsworth, R.L. Storage of Light in Atomic Vapor. Phys. Rev. Lett. 2001, 86, 783–786. [Google Scholar]
- Zhang, B.; Guo, F.; Wang, J.; Bai, H.; Guo, R.; Zhang, L.; Huang, Y. Plasmonically induced reflection in MIM plasmonic waveguide resonator system. Optik 2018, 171, 161–166. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Wang, R.B.; Zhang, Z.Y.; Tang, J.; Zhang, W.D.; Xue, C.Y.; Yan, S.B. Electromagnetically Induced Transparency and Refractive Index Sensing for a Plasmonic Waveguide with a Stub Coupled Ring Resonator. Plasmonics 2017, 12, 1007–1013. [Google Scholar] [CrossRef]
- Ruan, B.; You, Q.; Zhu, J.; Wu, L.; Guo, J.; Dai, X.; Xiang, Y. Improving the Performance of an SPR Biosensor Using Long-Range Surface Plasmon of Ga-Doped Zinc Oxide. Sensors 2018, 18, 2098. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.-T.; Hu, J.-X.; Wang, J.-J. Double-Frequency Filter Based on Coupling of Cavity Modes and Surface Plasmon Polaritons. IEEE Photonics J. 2014, 6, 4800307. [Google Scholar] [CrossRef]
- Kwon, M.-S. Metal Stripe Waveguide Based Interferometer-Type Sensor Working in an Aqueous Solution With a Low Refractive Index. J. Light. Technol. 2012, 30, 2035–2041. [Google Scholar] [CrossRef]
- Ma, F.S.; Lee, C. Optical Nanofilters Based on Meta-Atom Side-Coupled Plasmonics Metal- Insulator-Metal Waveguides. J. Light. Technol. 2013, 31, 2876–2880. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, Y.; Chen, Z.; Peng, J.; Qian, J.; Xu, J.; Sun, Q. Tunable Resonances in the Plasmonic Split-Ring Resonator. IEEE Photonics J. 2014, 6, 1–6. [Google Scholar] [CrossRef]
- Bahadori, M.; Eshaghian, A.; Mehrany, K. A Circuit Model for Analysis of Metal-Insulator-Metal Plasmonic Comple-mentary Split-Ring Resonators. J. Light. Technol. 2014, 32, 2659–2665. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, T.; Liu, T.; Yan, X.; Li, Z.; Xu, C. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon 2018, 126, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Zhai, X.; Wang, L.-L.; Sun, B.; Liu, J.-Q.; Wen, S.-C. Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Opt. Express 2016, 24, 17886–17899. [Google Scholar] [CrossRef] [PubMed]
- Rigosi, A.F.; Liu, C.-I.; Wu, B.Y.; Lee, H.-Y.; Kruskopf, M.; Yang, Y.; Hill, H.M.; Hu, J.; Bittle, E.G.; Obrzut, J.; et al. Examining epitaxial graphene surface conductivity and quantum Hall device stability with Parylene passivation. Microelectron. Eng. 2018, 194, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Kasani, S.; Curtin, K.; Wu, N.Q. A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light man-agement and sensing applications. Nanophotonics 2019, 8, 2065–2089. [Google Scholar] [CrossRef]
- Kao, Y.-Y.; Chao, P.C.-P. A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time. Sensors 2011, 11, 5402–5415. [Google Scholar] [CrossRef]
- Chao, C.-T.C.; Chau, Y.-F.C.; Huang, H.J.; Kumara, N.T.R.N.; Kooh, M.R.R.; Lim, C.M.; Chiang, H.-P. Highly Sensitive and Tunable Plasmonic Sensor Based on a Nanoring Resonator with Silver Nanorods. Nanomaterials 2020, 10, 1399. [Google Scholar] [CrossRef]
- Kekatpure, R.D.; Hryciw, A.C.; Barnard, E.S.; Brongersma, M.L. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt. Express 2009, 17, 24112–24129. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, T.; Yu, S.; Ma, W. High-Performance Nano-Sensing and Slow-Light Applications Based on Tunable Multiple Fano Resonances and EIT-Like Effects in Coupled Plasmonic Resonator System. IEEE Access 2020, 8, 40599–40611. [Google Scholar] [CrossRef]
- Hu, F.; Yi, H.; Zhou, Z. Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt. Express 2011, 19, 4848–4855. [Google Scholar] [CrossRef]
- Chen, J.; Badioli, M.; Alonso-González, P.; Thongrattanasiri, S.; Huth, F.; Osmond, J.; Spasenović, M.; Centeno, A.; Pesquera, A.; Godignon, P.; et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012, 487, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, S.; Zhai, X.; Huang, Y.; Liu, J.-Q.; Wang, L.-L.; Wen, S.-C. Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Opt. Lett. 2017, 42, 3052–3055. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Yan, S.; Yang, X.; Su, H.; Wu, X.; Hua, E. Nanosensor Based on Fano resonance in a metal-insulator-metal waveguide structure coupled with a half-ring. Results Phys. 2021, 21, 103842. [Google Scholar] [CrossRef]
- Shen, X.; Zhao, L.; Xia, D. Research on the Disc Sensitive Structure of a Micro Optoelectromechanical System (MOEMS) Resonator Gyroscope. Micromachines 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallapa, M.; Yeow, J.T.W. Design, Fabrication and Testing of a Polymer Composite Based Hard-Magnetic Mirror for Bi-omedical Scanning Applications. J. Electrochem. Soc. 2013, 161, B3006–B3013. [Google Scholar] [CrossRef]
- Yong, Y.K.; Moheimani, S.O.R.; Kenton, B.J.; Leang, K.K. Invited Review Article: High-speed flexure-guided nanopositioning: Mechanical design and control issues. Rev. Sci. Instrum. 2012, 83, 121101. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Guan, B.; Cui, L.; Cui, N.; Zhang, Y.; Zeng, Y. Transverse-mode control in VCSELs by electrically tunable liquid crystal mode filters. AIP Adv. 2021, 11, 015225. [Google Scholar] [CrossRef]
- Chiang, L.-Y.; Wang, C.-T.; Lin, T.-S.; Pappert, S.; Yu, P. Highly sensitive silicon photonic temperature sensor based on liquid crystal filled slot waveguide directional coupler. Opt. Express 2020, 28, 29345–29356. [Google Scholar] [CrossRef]
- Li, J.; Wen, C.-H.; Gauza, S.; Lu, R.; Wu, S.-T. Refractive Indices of Liquid Crystals for Display Applications. J. Disp. Technol. 2005, 1, 51–61. [Google Scholar] [CrossRef]
- Khan, K.R.; Mnaymneh, K.; Awad, H.; Hasan, I. Slow light propagation in tunable nanoscale photonic crystal cavity filled with nematic liquid crystal. Opt. Eng. 2014, 53, 102705. [Google Scholar] [CrossRef]
- Nie, X.; Xianyu, H.; Lu, R.; Wu, T.X.; Wu, S.-T. Pretilt Angle Effects on Liquid Crystal Response Time. J. Disp. Technol. 2007, 3, 280–283. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, H.; Li, Z.; Zhao, C.; Xu, Z.; Pan, Q. Object traversing by monocular UAV in outdoor environment. Asian J. Control 2020, 23, 2766–2775. [Google Scholar] [CrossRef]
- Qiao, G.; Ding, L.; Zhang, L.; Yan, H. Accessible tourism: A bibliometric review (2008–2020). Tour. Rev. 2021. (ahead-of-print). [Google Scholar] [CrossRef]
- Wang, M.; Jiang, C.; Zhang, S.; Song, X.; Tang, Y.; Cheng, H.-M. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 2018, 10, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Feng, L.; Shi, M.; Cui, C.; Liu, Y. Effect of plasma-activated water on the structure and in vitro digestibility of waxy and normal maize starches during heat-moisture treatment. Food Chem. 2020, 306, 125589. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Y.; Zhang, F.; Lee, C.-S. A Novel Aluminum-Graphite Dual-Ion Battery. Adv. Energy Mater. 2016, 6, 1502588. [Google Scholar] [CrossRef] [Green Version]
- Mu, S.; Liu, Q.; Kidkhunthod, P.; Zhou, X.; Wang, W.; Tang, Y. Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 2020, 8, 7. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Y.; Xu, W.; Zhao, W.; He, C. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities. Sensors 2016, 16, 706. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, H.; Liu, G.; Liu, J.; Liu, Y.; Tang, L.; Liu, Z. High-quality Temperature Sensor Based on the Plasmonic Resonant Absorber. Plasmonics 2018, 14, 279–283. [Google Scholar] [CrossRef]
- Dehghan, B.; Sadeghi, M.; Adelpour, Z. Refractive Index, Temperature and Pressure of Elliptical Plasmonic Waveguide Resonator. Rev. Geintec-Gestao Inov. E Tecnol. 2021, 11, 2029–2037. [Google Scholar] [CrossRef]
- Chen, F.; Li, J. Refractive index and temperature sensing based on defect resonator coupled with a MIM waveguide. Mod. Phys. Lett. B 2019, 33, 126178. [Google Scholar] [CrossRef]
- Kong, Y.; Qiu, P.; Wei, Q.; Quan, W.; Wang, S.; Qian, W. Refractive index and temperature nanosensor with plasmonic waveguide system. Opt. Commun. 2016, 371, 132–137. [Google Scholar] [CrossRef]
T (°C) | Ae | Be | Ce | Ao | Bo | Co |
---|---|---|---|---|---|---|
25 | 1.754 | 10.08 | 0.1709 | 1.527 | 10.16 | 0.4898 |
30 | 1.746 | 10.93 | 0.4854 | 1.527 | 10.62 | 0.1626 |
35 | 1.737 | 10.63 | 0.0357 | 1.528 | 10.67 | 0.2551 |
40 | 1.726 | 10.57 | 0.1712 | 1.530 | 10.05 | 0.2575 |
45 | 1.713 | 10.66 | 0.3171 | 1.532 | 10.13 | 0.2511 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Feng, H.; Liu, C.; Fang, D.; Wang, J.; Wang, L.; Zhang, Z.; Ran, L.; Gao, Y. Tunable Triple Plasmonically Induced Transparency in Triangular Cavities Coupled with an MDM Waveguide. Photonics 2022, 9, 100. https://doi.org/10.3390/photonics9020100
Zhang J, Feng H, Liu C, Fang D, Wang J, Wang L, Zhang Z, Ran L, Gao Y. Tunable Triple Plasmonically Induced Transparency in Triangular Cavities Coupled with an MDM Waveguide. Photonics. 2022; 9(2):100. https://doi.org/10.3390/photonics9020100
Chicago/Turabian StyleZhang, Jingyu, Hengli Feng, Chang Liu, Dongchao Fang, Jincheng Wang, Lehui Wang, Zuoxin Zhang, Lingling Ran, and Yang Gao. 2022. "Tunable Triple Plasmonically Induced Transparency in Triangular Cavities Coupled with an MDM Waveguide" Photonics 9, no. 2: 100. https://doi.org/10.3390/photonics9020100
APA StyleZhang, J., Feng, H., Liu, C., Fang, D., Wang, J., Wang, L., Zhang, Z., Ran, L., & Gao, Y. (2022). Tunable Triple Plasmonically Induced Transparency in Triangular Cavities Coupled with an MDM Waveguide. Photonics, 9(2), 100. https://doi.org/10.3390/photonics9020100