Slow Light Effect and Tunable Channel in Graphene Grating Plasmonic Waveguide
Abstract
:1. Introduction
2. Structure and Theory
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, P.; Dolado, I.; Alfaro-Mozaz, F.J.; Casanova, F.; Hueso, L.E.; Liu, S.; Edgar, J.H.; Nikitin, A.Y.; Vélez, S.; Hillenbrand, R. Infrared hyperbolic metasurface based on nano structured van der Waals materials. Science 2018, 359, 892–896. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.Z.; Cao, T. Reconfigurable slow light in phase change photonic crystal waveguide. J. Appl. Phys. 2020, 128, 163104. [Google Scholar] [CrossRef]
- Torrijos-Morán, L.; Griol, A.; Garcia-Ruperez, J. Slow light bimodal interferometry in one-dimensional photonic crystal waveguides. Light Sci. Appl. 2021, 10, 1–12. [Google Scholar] [CrossRef]
- Keshavarz, A.; Zakery, A. A Novel Terahertz Semiconductor Metamaterial for Slow Light Device and Dual-Band Modulator Applications. Plasmonics 2017, 13, 459–466. [Google Scholar] [CrossRef]
- Deng, H.G.; Tian, L.L.; Xiong, R.J.; Liu, G.; Yang, K.; Zhao, H.H.; Wang, W.H. Review on plasmon induced transparency based on metal-dielectric-metal waveguides. J. Cent. South Univ. 2020, 27, 698–710. [Google Scholar] [CrossRef]
- Khani, S.; Danaie, M.; Rezaei, P. Hybrid All-Optical Infrared Metal-Insulator-Metal Plasmonic Switch Incorporating Photonic Crystal Bandgap Structures. Nanostructures-Fundam. Appl. 2020, 40, 100802. [Google Scholar] [CrossRef]
- Cai, W.; Xiao, B.; Yu, J.; Xiao, L.H. A compact graphene metamaterial based on electromagnetically induced transparency effect. Opt. Commun. 2020, 475, 126266. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, E.; Zhang, Z.B.; Li, H.J.; Xu, H.; Zhang, X.; Luo, X.; Zhou, F.Q. Dual-Mode On-to-Off Modulation of Plasmon-Induced Transparency and Coupling Effect in Patterned Graphene-Based Terahertz Metasurface. Nanoscale Res. Lett. 2020, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.Y.; Zhu, Y.H.; Zhang, J.; Zeng, Q.D.; Du, J.; Wang, T.; Yu, H.Q. An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators. Chinese Phys. B 2020, 29, 377–386. [Google Scholar] [CrossRef]
- Ruan, B.; Xiong, C.; Liu, C.; Li, M.; Wu, K.; Li, H. Tunable plasmon-induced transparency and slow light in a metamaterial with graphene—ScienceDirect. Results Phys. 2020, 19, 103382. [Google Scholar] [CrossRef]
- Islam, M.; Dhriti, K.M.; Sarkar, R.; Kumar, G. Tunable control of electromagnetically induced transparency effect in a double slot terahertz waveguide. Opt. Commun. 2020, 483, 126632. [Google Scholar] [CrossRef]
- Bigelow, M.S.; Lepeshkin, N.N.; Boyd, R.W. Superluminal and slow light propagation in a room-temperature solid. Science 2003, 301, 200–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, T. Time delay limits of stimulated-Brillouin-scattering-based slow light systems. Opt. Lett. 2007, 31, 1398–1400. [Google Scholar] [CrossRef] [PubMed]
- Rawal, S.; Sinha, R.K.; De La Rue, R.M. Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal. Opt. Express 2009, 17, 13315–13325. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.X. Slow light engineering in periodic-stub-assisted plasmonic waveguide. Appl. Opt. 2013, 52, 1799–1804. [Google Scholar] [CrossRef]
- Chen, J.F.; Li, J.N.; Liu, X.; Rohimah, S.; Tian, H.; Qi, D.W. Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt. Commun. 2020, 482, 126563. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.N.; Chen, J.F.; Rohimah, S.; Li, J.F. Fano Resonance Based on D-shaped Waveguide Structure and Its Application for Human Hemoglobin Detection. Appl. Optics. 2020, 59, 6424–6430. [Google Scholar] [CrossRef]
- Christensen, J.; Manjavacas, A.; Thongrattanasiri, S.; Koppens, F.H.L.; García de Abajo, F.J. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 2012, 6, 431–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.T.; Choi, S.Y. Graphene-based plasmonic waveguides for photonic integrated circuits. Opt. Express 2011, 19, 24557–24562. [Google Scholar] [CrossRef]
- Li, J.N.; Chen, J.F.; Liu, X.; Tian, H.; Wang, J.F.; Cui, J.G.; Rohimah, S. Optical sensing based on multimode Fano resonances in MIM waveguide system with X-shaped resonant cavities. Appl. Opt. 2021, 60, 5312–5319. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, J.N.; Chen, J.F.; Rohimah, S.; Tian, H.; Wang, J.F. Independently tunable triple Fano resonances based on MIM waveguide structure with a semi-ring cavity and its sensing characteristics. Opt. Express 2021, 29, 20829–20838. [Google Scholar] [CrossRef] [PubMed]
- Grigorenko, A.; Polini, M.; Novoselov, K. Graphene plasmonics. Nat. Photon. 2012, 6, 749–758. [Google Scholar] [CrossRef]
- Xia, S.X.; Zhai, X.; Huang, Y.; Liu, J.Q.; Wang, L.L.; Wen, S.C. Graphene Surface Plasmons with Dielectric Metasurfaces. J. Lightwave Technol. 2017, 35, 4553–4558. [Google Scholar] [CrossRef]
- Xia, S.X.; Zhai, X.; Huang, Y.; Liu, J.Q.; Wang, L.L.; Wen, S.C. Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Opt. Lett. 2017, 42, 3052–3055. [Google Scholar] [CrossRef]
- Hao, R.; Peng, X.L.; Li, E.P.; Xu, Y.; Jin, J.M.; Zhang, X.M.; Chen, H.S. Improved Slow Light Capacity in Graphene-based Waveguide. Sci. Rep. 2015, 5, 15335. [Google Scholar] [CrossRef] [Green Version]
- Ghaderian, P.; Habibzadeh-Sharif, A. Rainbow trapping and releasing in graded grating graphene plasmonic waveguides. Opt. Express 2021, 29, 3996–4009. [Google Scholar] [CrossRef]
- Mao, D.; Cheng, C.; Wang, F.F.; Xiao, Y.H.; Li, T.T.; Chang, L.; Soman, A.; Kananen, T.; Zhang, X.; Kraiank, M.; et al. Device architectures for low voltage and ultrafast graphene integrated phase modulators. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.X.; Zhai, X.; Wang, L.L.; Wen, S.C. Plasmonically induced transparency in double-layered graphene nanoribbons. Photonics Res. 2018, 6, 692–702. [Google Scholar] [CrossRef]
- Xia, S.X.; Zhai, X.; Wang, L.L.; Wen, S.C. Plasmonically induced transparency in in-plane isotropic and anisotropic 2D materials. Opt. Express 2020, 28, 7980–8022. [Google Scholar] [CrossRef]
- Hanson, G.W. Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J. Appl. Phys. 2008, 104, 084314. [Google Scholar] [CrossRef]
- Lu, H.; Zeng, C.; Zhang, Q.M.; Liu, X.M.; Hossain, M.M.; Reineck, P.; Gu, M. Graphene-based active slow surface plasmon polaritons. Sci. Rep. 2015, 5, 8443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossieni, A.; Massoud, Y. A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express 2006, 14, 11318–11323. [Google Scholar] [CrossRef] [PubMed]
- Kador, L. Kramers-Kronig relations in nonlinear optics. Appl. Phys. Lett. 1995, 66, 2938. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, X.; Wu, Q.; Li, W.; Li, C. Slow Light Effect and Tunable Channel in Graphene Grating Plasmonic Waveguide. Photonics 2022, 9, 54. https://doi.org/10.3390/photonics9020054
Zhang Y, Liu X, Wu Q, Li W, Li C. Slow Light Effect and Tunable Channel in Graphene Grating Plasmonic Waveguide. Photonics. 2022; 9(2):54. https://doi.org/10.3390/photonics9020054
Chicago/Turabian StyleZhang, Yingqiu, Xing Liu, Qiaohua Wu, Wenfeng Li, and Chunlei Li. 2022. "Slow Light Effect and Tunable Channel in Graphene Grating Plasmonic Waveguide" Photonics 9, no. 2: 54. https://doi.org/10.3390/photonics9020054
APA StyleZhang, Y., Liu, X., Wu, Q., Li, W., & Li, C. (2022). Slow Light Effect and Tunable Channel in Graphene Grating Plasmonic Waveguide. Photonics, 9(2), 54. https://doi.org/10.3390/photonics9020054