Single-Shot On-Axis Fizeau Polarization Phase-Shifting Digital Holography for Complex-Valued Dynamic Object Imaging
Abstract
:1. Introduction
2. Principles and Methods
2.1. Fizeau Polarization Phase-Shifting Digital Holography (FP-PSDH)
2.2. Experimental Design
3. Results and Discussion
3.1. Complex-Valued and Dynamic Object Imaging
3.2. Weakly Reflective Object Imaging
3.3. Quantitative Analysis of System Stability and Sensitivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kreis, T. Handbook of Holographic Interferometry; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Tahara, T.; Quan, X.; Otani, R.; Takaki, Y.; Matoba, O. Digital holography and its multidimensional imaging applications: A review. Microscopy 2018, 67, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Paturzo, M.; Pagliarulo, V.; Bianco, V.; Memmolo, P.; Miccio, L.; Merola, F.; Ferraro, P. Digital Holography, a metrological tool for quantitative analysis: Trends and future applications. Opt. Lasers Eng. 2018, 104, 32–47. [Google Scholar] [CrossRef]
- Balasubramani, V.; Kujawińska, M.; Allier, C.; Anand, V.; Cheng, C.-J.; Depeursinge, C.; Hai, N.; Juodkazis, S.; Kalkman, J.; Kuś, A.; et al. Roadmap on Digital Holography-Based Quantitative Phase Imaging. J. Imaging 2021, 7, 252. [Google Scholar] [CrossRef] [PubMed]
- Javidi, B.; Carnicer, A.; Anand, A.; Barbastathis, G.; Chen, W.; Ferraro, P.; Goodman, J.; Horisaki, R.; Khare, K.; Kujawinska, M.; et al. Roadmap on digital holography [Invited]. Opt. Express 2021, 29, 35078. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Singh, R.K.; Vinu, R.V.; Chen, Z.; Pu, J. A wavefront division multiplexing holographic scheme and its application in looking through diffuser. New J. Phys. 2021, 23, 113034. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Z.; Singh, R.K.; Vinu, R.; Pu, J. Increasing field of view and signal to noise ratio in the quantitative phase imaging with phase shifting holography based on the Hanbury Brown-Twiss approach. Opt. Lasers Eng. 2021, 148, 106771. [Google Scholar] [CrossRef]
- Vinu, R.V.; Chen, Z.; Singh, R.K.; Pu, J. Ghost diffraction holographic microscopy. Optica 2020, 7, 1697. [Google Scholar] [CrossRef]
- Xu, W.; Jericho, M.H.; Meinertzhagen, I.A.; Kreuzer, H.J. Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. USA 2001, 98, 11301–11305. [Google Scholar] [CrossRef] [Green Version]
- Cuche, E.; Bevilacqua, F.; Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 1999, 24, 291–293. [Google Scholar] [CrossRef]
- Osten, W.; Faridian, A.; Gao, P.; Körner, K.; Naik, D.; Pedrini, G.; Singh, A.K.; Takeda, M.; Wilke, M. Recent advances in digital holography [Invited]. Appl. Opt. 2014, 53, G44–G63. [Google Scholar] [CrossRef]
- Hai, N.; Rosen, J. Coded aperture correlation holographic microscope for single-shot quantitative phase and amplitude imaging with extended field of view. Opt. Express 2020, 28, 27372. [Google Scholar] [CrossRef]
- Kumar, M.; Quan, X.; Awatsuji, Y.; Cheng, C.; Hasebe, M.; Tamada, Y.; Matoba, O. Common-path multimodal three-dimensional fluorescence and phase imaging system. J. Biomed. Opt. 2020, 25, 1. [Google Scholar] [CrossRef]
- Latychevskaia, T.; Fink, H.-W. Solution to the Twin Image Problem in Holography. Phys. Rev. Lett. 2007, 98, 233901. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, D.S.; Kelly, D.P.; Pandey, N.; Hennelly, B.M. Twin removal in digital holography using diffuse illumination. Opt. Lett. 2009, 34, 3610–3612. [Google Scholar] [CrossRef] [Green Version]
- Anand, V.; Katkus, T.; Linklater, D.P.; Ivanova, E.P.; Juodkazis, S. Lensless Three-Dimensional Quantitative Phase Imaging Using Phase Retrieval Algorithm. J. Imaging 2020, 6, 99. [Google Scholar] [CrossRef]
- Rivenson, Y.; Wu, Y.; Ozcan, A. Deep learning in holography and coherent imaging. Light. Sci. Appl. 2019, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chen, X.; Chi, Z.; Mann, C.; Razi, A. Deep DIH: Single-Shot Digital In-Line Holography Reconstruction by Deep Learning. IEEE Access 2020, 8, 202648–202659. [Google Scholar] [CrossRef]
- Yamaguchi, I.; Zhang, T. Phase-shifting digital holography. Opt. Lett. 1997, 22, 1268–1270. [Google Scholar] [CrossRef]
- Yamaguchi, I.; Kato, J.-I.; Ohta, S.; Mizuno, J. Image formation in phase-shifting digital holography and applications to microscopy. Appl. Opt. 2001, 40, 6177–6186. [Google Scholar] [CrossRef]
- Awatsuji, Y.; Sasada, M.; Kubota, T. Parallel quasi-phase-shifting digital holography. Appl. Phys. Lett. 2004, 85, 1069–1071. [Google Scholar] [CrossRef]
- Awatsuji, Y.; Tahara, T.; Kaneko, A.; Koyama, T.; Nishio, K.; Ura, S.; Kubota, T.; Matoba, O. Parallel two-step phase-shifting digital holography. Appl. Opt. 2008, 47, D183–D189. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Nitta, K.; Matoba, O.; Awatsuji, Y. Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator. Appl. Opt. 2012, 51, 2633–2637. [Google Scholar] [CrossRef] [PubMed]
- Awatsuji, Y.; Kakue, T.; Tahara, T.; Xia, P.; Nishio, K.; Ura, S.; Kubota, T.; Matoba, O. Parallel phase-shifting digital holography system using a high-speed camera. In Proceedings of the Optical Design and Testing V, Photonics Asia, Beijing, China; 2012; Volume 8557, p. 85570E. [Google Scholar]
- Wang, D.; Liang, R. Simultaneous polarization Mirau interferometer based on pixelated polarization camera. Opt. Lett. 2015, 41, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Tanigawa, R.; Yatabe, K.; Oikawa, Y.; Onuma, T.; Niwa, H. Simultaneous imaging of flow and sound using high-speed parallel phase-shifting interferometry. Opt. Lett. 2018, 43, 991–994. [Google Scholar] [CrossRef] [PubMed]
- Yatabe, K.; Tanigawa, R.; Ishikawa, K.; Oikawa, Y. Time-directional filtering of wrapped phase for observing transient phenomena with parallel phase-shifting interferometry. Opt. Express 2018, 26, 13705–13720. [Google Scholar] [CrossRef]
- Tian, X.; Liang, R. Snapshot phase-shifting diffraction phase microscope. Opt. Lett. 2020, 45, 3208–3211. [Google Scholar] [CrossRef]
- Tahara, T.; Kanno, T.; Arai, Y.; Ozawa, T. Single-shot phase-shifting incoherent digital holography. J. Opt. 2017, 19, 065705. [Google Scholar] [CrossRef]
- Tsuruta, M.; Fukuyama, T.; Tahara, T.; Takaki, Y. Fast Image Reconstruction Technique for Parallel Phase-Shifting Digital Holography. Appl. Sci. 2021, 11, 11343. [Google Scholar] [CrossRef]
- Tahara, T.; Kozawa, Y.; Oi, R. Single-path single-shot phase-shifting digital holographic microscopy without a laser light source. Opt. Express 2022, 30, 1182. [Google Scholar] [CrossRef]
- Fukuda, T.; Awatsuji, Y.; Xia, P.; Kakue, T.; Nishio, K.; Matoba, O. Review of three-dimensional imaging of dynamic objects by parallel phase-shifting digital holography. Opt. Eng. 2018, 57, 061613. [Google Scholar] [CrossRef]
- Fukuda, T.; Shinomura, M.; Xia, P.; Awatsuji, Y.; Nishio, K.; Matoba, O. Three-dimensional motion-picture imaging of dynamic object by parallel-phase-shifting digital holographic microscopy using an inverted magnification optical system. Opt. Rev. 2017, 24, 206–211. [Google Scholar] [CrossRef]
- Xia, P.; Ri, S.; Inoue, T.; Awatsuji, Y.; Matoba, O. Dynamic phase measurement of a transparent object by parallel phase-shifting digital holography with dual polarization imaging cameras. Opt. Lasers Eng. 2021, 141, 106583. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Dudley, A.; Vasilyeu, R.; Belyi, V.; Khilo, N.; Ropot, P.; Forbes, A. Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator. Opt. Commun. 2012, 285, 5–12. [Google Scholar] [CrossRef]
- Ulusoy, E.; Onural, L.; Ozaktas, H.M. Full-complex amplitude modulation with binary spatial light modulators. J. Opt. Soc. Am. A 2011, 28, 2310–2321. [Google Scholar] [CrossRef] [Green Version]
- Hai, N.; Rosen, J. Single-plane and multiplane quantitative phase imaging by self-reference on-axis holography with a phase-shifting method. Opt. Express 2021, 29, 24210. [Google Scholar] [CrossRef]
Interferometry Scheme | Type of Geometry | Detection Scheme | Temporal Stability (mRad) | Spatial Sensitivity (mRad) |
---|---|---|---|---|
MP-MZI | double path | four-shot | 18.95 | 27.76 |
PP-MZI | double path | single-shot | 12.20 | 24.86 |
FP-PSDH | single path | single-shot | 4.02 | 17.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; R. V., V.; Ren, H.; Du, X.; Chen, Z.; Pu, J. Single-Shot On-Axis Fizeau Polarization Phase-Shifting Digital Holography for Complex-Valued Dynamic Object Imaging. Photonics 2022, 9, 126. https://doi.org/10.3390/photonics9030126
Liu H, R. V. V, Ren H, Du X, Chen Z, Pu J. Single-Shot On-Axis Fizeau Polarization Phase-Shifting Digital Holography for Complex-Valued Dynamic Object Imaging. Photonics. 2022; 9(3):126. https://doi.org/10.3390/photonics9030126
Chicago/Turabian StyleLiu, Hanzi, Vinu R. V., Hongliang Ren, Xingpeng Du, Ziyang Chen, and Jixiong Pu. 2022. "Single-Shot On-Axis Fizeau Polarization Phase-Shifting Digital Holography for Complex-Valued Dynamic Object Imaging" Photonics 9, no. 3: 126. https://doi.org/10.3390/photonics9030126
APA StyleLiu, H., R. V., V., Ren, H., Du, X., Chen, Z., & Pu, J. (2022). Single-Shot On-Axis Fizeau Polarization Phase-Shifting Digital Holography for Complex-Valued Dynamic Object Imaging. Photonics, 9(3), 126. https://doi.org/10.3390/photonics9030126