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Abstract: Infrared images can provide clear contrast information to distinguish between the target
and the background under any lighting conditions. In contrast, visible images can provide rich
texture details and are compatible with the human visual system. The fusion of a visible image and
infrared image will thus contain both comprehensive contrast information and texture details. In this
study, a novel approach for the fusion of infrared and visible images is proposed based on a dual-
discriminator generative adversarial network with a squeeze-and-excitation module (DDGANSE).
Our approach establishes confrontation training between one generator and two discriminators.
The goal of the generator is to generate images that are similar to the source images, and contain the
information from both infrared and visible source images. The purpose of the two discriminators is
to increase the similarity between the image generated by the generator and the infrared and visible
images. We experimentally demonstrated that using continuous adversarial training, DDGANSE
outputs images retain the advantages of both infrared and visible images with significant contrast
information and rich texture details. Finally, we compared the performance of our proposed method
with previously reported techniques for fusing infrared and visible images using both quantitative
and qualitative assessments. Our experiments on the TNO dataset demonstrate that our proposed
method shows superior performance compared to other similar reported methods in the literature
using various performance metrics.

Keywords: fusion image; generative adversarial networks; infrared image; squeeze-and-excitation
net-works; visible image

1. Introduction

Image fusion is a technique to gather all the important information from multiple
images to produce fewer images or a single comprehensive and informative image for
subsequent processing functions [1]. In particular, the image fusion technique is widely
used in infrared and visible images for object detection and target recognition applica-
tions [2–4]. Infrared (IR) images can provide enhanced contrast between the target object
and the background which is an important feature in imaging systems. However, IR im-
ages usually do not provide detailed texture which leads to low quality or low resolution
images. On the other hand, visible images have the advantage of higher resolution and
detailed texture information at the expense of poor contrast between target object and the
background. Figure 1 illustrates examples of visible and infrared images of a same scene.
As seen in Figure 1, the visible images contain rich texture details but poor contrast (top
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row), while IR images have high contrast (bottom row) and poor texture details. Image
fusion can combine the advantages of IR and visible images to provide high quality images
with detailed texture and high contrast. As such, image fusion technology is an important
technique which can illustrate the target information in a complete and clear manner.
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Figure 1. Illustration of visible (top row) and infrared (bottom row) images of the same scene. It is
clear that the visible images contain rich texture details (top row), as show in the red boxes, while the
infrared images have high contrast (bottom row), as shown in the orange boxes.

The key aspect of image fusion is to extract the most important information from the
input images and fusing them into an image containing all important information from the
input images. For IR and visible images, the most important information are contrast and
texture details and as such, a fused image should contain both information. Many fusion
methods for IR and visible images have been introduced in the past decades. These methods
can be classified into traditional methods and deep learning methods. Typical traditional
methods include multi-scale transformation-based methods, sparse representation-based
methods [5,6], subspace-based methods [7], saliency-based methods [8,9], hybrid meth-
ods [10–12], and other fusion methods [13–15]. In these methods, information extraction
and fusion rules are designed manually to achieve a better fusion performance. However,
due to the diversity of information extraction and fusion rule designs, fusion methods
have become increasingly complex. Recently, deep learning methods have been applied
extensively for image fusion tasks with IR and visible images, such as FusionGAN [16],
Densefuse [17], convolutional sparse representation [18], proportional maintenance of
gradient and intensity [19], and other methods [20–22]. Although existing methods have
yielded good results under most conditions, there are certain limitations that should not
be overlooked.

First, most of the proposed generative adversarial networks (GAN) [23] only utilize
one discriminator for image fusion. These methods only retain the information of one
source image and can lose a significant amount of information from the other source image,
resulting in a final fused image which does not contain all the details from source images.

Second, with most of the existing methods, it is difficult to achieve a good balance in
maintaining all of the source image information.

Finally, in the case where the actual problem of utilizing one discriminator is not
addressed, it is not sufficient to rely only on the loss function to solve the problem.

To overcome these limitations, we propose a dual-discriminator-based GAN with
squeeze-and-excitation (SE) networks [24]. Our main contributions are summarized as
follows. First, we used a GAN with dual discriminators. The two discriminators are trained
with the generator to ensure that the fused image retains the high contrast of the IR image
and the richly detailed texture information of the visible image. We use the source image
as the real data for comparison with the fused image to ensure that the fused image is
analogous to the source image.
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Second, we added SE networks to the generator to assist in learning the correla-
tion between channels, screen out attention for the channel, and further improving the
performance of the network.

Third, a dense connection is added to the generator to realize feature reuse and solve
the problem of gradient vanishing.

Next, we have designed a specific loss function comprising two parts: LG and LD.
The generator loss integrates the traditional loss, which further enhances the constraint of
the generator. At the same time, the discriminator loss focuses more on the relationship
between the original image and fused image. LD has two parts: LDi and LDV; the LDi
loss function improves the contrast information of the fused image through confrontation
training, and the LDV loss function further enriches the details of the fused image. The loss
function designed in this study is crucial for obtaining a larger amount of information from
source images, including contrast information and detailed texture information.

Finally, the dual-discriminator GAN with squeeze-and-excitation module (DDGANSE)
network is tested on the TNO dataset. Our extensive experimental data clearly demon-
strate that our proposed fusing technique has significant advantages compared to other
existing methods.

2. Methods

This chapter describes in detail the DDGANSE method proposed in this study. First,
the overall framework of the DDGANSE is explained in detail. Second, we describe the
network architecture for the generator and discriminator. Finally, we provide details
regarding the loss of function of the network.

2.1. Overall Framework

As illustrated in Figure 2, the DDGANSE framework consist of two main parts. The
first part is the generator. We have added the SE module based on the traditional convolu-
tional neural network and reasonably use the advantage of a dense connection. The second
part is the discriminator, which is improved using a traditional GAN. In this study, two
discriminators are used for adversary learning. In addition, adversarial learning between
the generation and discrimination networks can effectively correct the prediction error.
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2.2. DDGANSE of the Generator

The generator part of the network architecture is illustrated in Figure 3. We divide
the generator into two paths, a gradient path and a contrast path, to extract information in
a complete and clear manner. The gradient path mainly extracts the texture information
which is mainly represented in the visible images with few information in the IR images.
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Figure 3. Network architecture of the generator.

Therefore, one IR and two visible images together comprise the input of the gradient
path as indicated in Figure 3 (top path). Similarly, the contrast path will extract the
contrast information of the target object and the background where IR images contain more
information than visible images. Therefore, two IR images and one visible image together
comprise the input of the contrast path as indicated in Figure 3 (bottom path).

The experimental results on the TNO dataset using the proposed network architecture
is presented in Table 1. We used a four-layer convolutional neural network in each informa-
tion extraction path. The first and second layers use 5 × 5 filters, and the third and fourth
layers utilize 3 × 3 filters. The stride in each layer is set to 1 with batch normalization and
the Leaky ReLU activation function. In contrast to the ReLU activation function, the Leaky
ReLU activation function assigns a non-zero slope to all negative values (instead of setting
all assignments to zero in ReLU). As a result, the utilization of the Leaky ReLU function
solves the problem of neuron death encountered with the ReLU function. In addition, we
added a SE module after each convolutional layer. The SE module can help with learning
the correlation between channels to allow the image generated by the generator to contain
more information from the source image. On this basis, we also added dense connections
to the generator. Using dense connections enables the mitigating gradient disappearance
enhancing feature delivery, and feature reuse, which allows the generator to use the feature
information of the source image more effectively and enhance the network properties of the
generator. Among them, we use two paths to extract information from the generator, and
introduce the attention module in the generator, which is also one of the main differences
between this study and DDcGAN [25].

Table 1. Quantization results for the selection of 3 × 3 and 5 × 5 filters in DDGANSE on the TNO
dataset (the best value is marked in yellow, and the second-best value is marked in red).

Generator Discriminator Performance Metrics

First Second Third Fourth First Second Third Fourth SSIM SCD CC EN
5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 0.63 1.65 0.45 6.89
5 × 5 5 × 5 3 × 3 3 × 3 5 × 5 5 × 5 5 × 5 5 × 5 0.67 1.66 0.47 6.74
3 × 3 3 × 3 3 × 3 3 × 3 5 × 5 5 × 5 5 × 5 5 × 5 0.69 1.79 0.46 6.99
3 × 3 3 × 3 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 0.67 1.54 0.50 6.99
5 × 5 5 × 5 5 × 5 5 × 5 3 × 3 3 × 3 3 × 3 3 × 3 0.64 1.67 0.49 6.89
5 × 5 5 × 5 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 0.73 1.79 0.52 7.09
3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 0.69 1.78 0.48 6.84
3 × 3 3 × 3 5 × 5 5 × 5 3 × 3 3 × 3 3 × 3 3 × 3 0.70 1.81 0.52 6.94

We then fuse the features proposed in the two paths using the concat method. To merge
the information from the source images completely, the fused images are processed by a
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1 × 1 kernel convolution with a stride size of 1 and a Tanh activation function. Throughout
the process, we use convolutions with a stride size of 1 and therefore, the size of the feature
map is the same as the size of the input image.

2.3. DDGANSE of the Discriminator

The DDGANSE of the discriminator is illustrated in Figure 4. In our DDGANSE archi-
tecture, we use two discriminators. Di is used to discriminate the fused image and IR image,
and Dv is used to discriminate the fused image and visible image. Both discriminators are
composed of four convolution layers and a linear layer. According to the experimental
results presented in Table 1, the four convolutional layers use 3 × 3 convolution kernels
and the Leaky ReLU activation function. In addition, batch normalization is added to the
last three convolution layers and the step size of each convolutional layer is set to be 2. The
architecture of discriminator is not similar to generator network. The reason is that the
discriminator is a classifier which first obtains the feature maps from the input image and
proceeds to categorize them. Thus, by assigning the stride to 2, it functions similar to a
pooling layer. The linear layer discriminates the input against the features extracted from
the first four convolutional layers and outputs the categorization probabilities. The contrast
of the fusion image can be improved by confrontation training of the Di discriminator, and
the texture details can be enriched by learning of the DV discriminator. The adversarial
network containing two discriminators enables the generator to generate fused images that
not only contain rich detailed information but also have significant contrast. For the dual
discriminator part, our network structure is different from DDcGAN. We use four-layer
convolution and add pool layer and linear layer. In summary, the performance of the fused
image can be improved by utilizing two discriminators.
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2.4. Loss Function

The loss function of our DDGANSE consists of two components: the loss function LG,
and the loss functions LDi and LDv, which will be described one by one. The loss function
of G (LG) consists of two terms and can be obtained as,

LG = LDDGANSE(G) + λLcontent (1)
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in which LG is the general loss of the generator, and λ is applied to strike a balance between
LDDGANSE(G) and Lcontent. The first term on the right side of the equation, LDDGANSE(G),
means the adversarial loss between G, and Di and Dv, and is defined as,

LDDGANSE =
1
N

N

∑
n=1
{[Di (In

f used)− a1]
2 + [Dv(In

f used)− a2]
2} (2)

where In
f used represents the fused image with n ∈ NN , N denotes the count of fused images,

and a1 and a2 are the output probabilities of the discriminator, where a1 corresponds to
discriminator Di discriminating the fused image from the IR image, and a2 corresponds to
discriminator Dv discriminating the fused image from the visible image. Since the generator
is not expecting the discriminator to be able to discriminate between the fused image and
the real image, both a1 and a2 are set to be 1. The second term, Lcontent, represents the
content loss. Our content loss function consists of two parts: contrast loss and gradient
loss. The contrast loss constrains the contrast between the target object and the background,
and the gradient loss causes the fused image to have more abundant texture information.
Specifically, Lcontent is defined as,

Lcontent =
1

HW
(Lcon + Lgrad + ε1L′con + ε2L′grad) (3)

In this case H and W represent the height and width of the input images, respectively.
ε1 and ε2 are constants that ought to be modified to accomplish the primary and secondary
correlation between the parameters in Equation (3).

The contrast loss is then defined as

Lcon = ||I f used − Iir||2F (4)

L′con = ||I f used − Ivis||2F (5)

Additionally, the gradient loss is defined as

Lgrad = ||∇I f used −∇Ivis||2F (6)

L′grad = ||∇I f used −∇Iir||2F (7)

where Ifused is the fused image generated by the DDGANSE, Iir is the IR source image,
Ivis is the visible source image, ‖ · ‖F indicates the matrix Frobenius norm, and ∇ is the
gradient operator.

The discriminators in DDGANSE are DV and Di; DV is used to distinguish the source
image from the visible image, and Di is used to discriminate the source image from the
IR image. Through the adversary loss of the discriminators, the generator can generate a
fusion image closer to the source image. The discriminator loss is defined as:

LDi =
1
N

N

∑
n=1

(Di(Ii)− bi)
2 +

1
N

N

∑
n=1

(Di(I f used)− b)2 (8)

LDv =
1
N

N

∑
n=1

(Dv(Iv)− bv)
2 +

1
N

N

∑
n=1

(Dv(I f used)− b)2 (9)

where b, bi, and bv stand for the labels of the fused image Ifused, IR image, Ii, and visible
image, Iv, respectively. Dv(Iv) and Dv(I f used) stand for the classification results of the
visible and fused images, separately; and Di(Ii) and Di(I f used) indicate the classification
outcomes of the IR and fused images, respectively.
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3. Experiments

In this chapter, we evaluate the performance of the proposed DDGANSE using the
TNO dataset. To evaluate the merits of our proposed method, we compare the image-
fusing performance of our approach to seven published methods in the literature. These
methods are LPP [26] , LP [27] , CVT [28] , DTCWT [29] , GTF [30] , CNN [31] , GAN-
McC [32] , PMGI [33] , FusionGAN , DDcGAN, RFN-Nest [34] , and RCGAN [35] . We
also provide an additional ablation experiment to compare the proposed DDGANSE with
FusionGAN, GANMcC, PMGI, and DDcGAN. First, we introduce the TNO dataset. Second,
we demonstrate the evaluation index used in the experiments. Finally, in order to evaluate
the performance of DDGANSE, we analyze our approach according to qualitative and
quantitative aspects.

3.1. Data

We evaluate DDGANSE and other comparison methods using the TNO dataset. The
image pairs in the TNO dataset consisted mainly of various military scenes. In the TNO
dataset, there are 60 infrared and visible image pairs, as well as three more serials involving
19, 32, and 23 image pairs. For testing, we used 16 image pairs from the TNO dataset. For
training, we adopted overlapping cropping strategies for extension of the data set.

3.2. Training Details

The generator and discriminator are trained repeatedly, with a percentage of training
times r. The batch size is represented by b, and it takes m steps to iterate through the
entire training data, and the total number of training epochs is M. In practice, we set b = 32,
r = 1/2, M = 10, and m as the ratio between the total number of patches and b. The original
learning rate as 0.0001, and Adam is used as the optimizer. The overall training process is
described in the summary of Algorithm 1.

Algorithm 1: Training procedure for DDGANSE.

1: for M epochs do
2: for m steps do
3: for r times do

4: Select b visible patches
{

I1
vis, I2

vis . . . Ib
vis

}
;

5: Select b infrared patches
{

I1
ir, I2

ir . . . Ib
ir

}
;

6: Select b fused patches {I1
f used, I2

f used . . . Ib
f used};

7: Update the parameters of the discriminator by
Adam Optimizer: ∇D(LD);
8: end for

9: Select b visible patches
{

I1
vis, I2

vis . . . Ib
vis

}
;

10: Select b infrared patches
{

I1
ir, I2

ir . . . Ib
ir

}
;

11: Update the parameters of the generator by
AdamOptimizer: ∇G(LG);
12: end for
13: end for

The experiments were carried out on a workstation in our laboratory, which was
configured with an Intel® Xeon(R) CPU E5-2620 v4 @ 2.10 GHz × 32 and equipped with
two 12 GB TITAN Xp graphics cards.

3.3. Performance Metrics

The quality assessment of image fusion is a sophisticated problem and therefore, we
conducted not just a qualitative assessment but also a quantitative one.

In this study, we use the structural similarity index (SSIM) [36], peak signal-to-noise
ratio (PSNR), entropy (EN) [37], sum of the correlations of differences (SCD) [38], correlation
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coefficient (CC) [39], and standard deviation (SD) [40] for assessment of the network
fusion performance.

(1) Structural Similarity Index (SSIM)
SSIM is applied to model the image loss and distortion, and it measures the structural

similarity between the source and fused images. The larger the value of SSIM, the better
the structure is maintained.

(2) Peak Signal-to-Noise Ratio (PSNR)
PSNR is an image quality evaluation index based on error sensitivity. It is a full-

reference image quality evaluation index. It is the most common and widely used objective
image evaluation index.

PSNR is used to measure the ratio between the effective information and noise of an
image, which can reflect whether the image is distorted. A larger PSNR value indicates less
distortion of the image and a higher image quality.

(3) Entropy (EN)
EN measures the amount of information contained in a fused image. EN is the most

commonly used metric to represent the amount of information in an image, and a large EN
value indicates that the fused result contains a large volume of information.

(4) Sum of the Correlations of Differences (SCD)
SCD is a similarity measurement. SCD will achieve the maximum value if images t

and t’ are identical. In contrast, SCD will achieve the minimum value −1 when the absolute
difference is always equal to π. The SCD metric is primarily concerned with the difference
between the fused image and the source image, and then measures the correlation between
the difference and the other source image. To a certain extent, SCD can also evaluate
pseudo-information. It means that the larger the SCD value, the less pseudo-information
the image contains.

(5) Correlation Coefficient (CC)
CC measures the degree of linear correlation between the fused image and source

images. The larger the CC, the more similar the fused image is to the source images, and as
a result, the better the fusion performance.

(6) Standard Deviation (SD)
SD is defined based on the statistical concept and reflects the extent to which the

values of individual pixels in the image vary from the average value. The regions with
high contrast always attract the attention of the human eye, and the fused image with
higher contrast often leads to a larger SD, which represents a better visual effect of the
fused image.

3.4. Results for the TNO Dataset

(1) Qualitative Comparison
Figure 5 presents the results of our proposed network architecture. The fused image

shows that DDGANSE is clearly better than the other popular fusion methods, including
FusionGAN , GANMcC , PMGI, and DDCGAN . On the one hand, the DDGANSE retains
the characteristics of IR images with a rich thermal radiation information which can clearly
identify the target from the background. This is crucial as most existing algorithms only
have good texture details, but lose most of the thermal radiation information which leads
to weak target detection. On the other hand, while reserving plenty of thermal radiation
information, the results of DDGANSE still retain a high amount of texture details from
visible images.
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The image display of the fusion results is shown in Figure 5. The four fusion algorithms
mentioned above can be roughly divided into two types. In the first type, the fusion results
retain the advantages of the IR images. Although there is a strong contrast between the
background and the target, the texture details are not sufficiently rich, as shown in Figure 6.
In the FusionGAN method in the first row and the third column and the PMGI method in
the first row and fourth column, the object (person) and the background information (tree)
have obvious contrast, but the texture details of the tree are unclear. In comparison (the
fifth column in Figure 6), our proposed method contains more texture details. In the second
type of fusion algorithm, the fused image retains more information from the visible light
image. Although the result has rich texture information, the contrast between the target
and the background is not obvious, e.g., the DDCGAN method in the first row and third
column of Figure 7. In the resulting image, it is almost impossible to find objects (boats and
people) in the background (forest). However, the details of the forest are relatively clear. In
contrast, the method proposed in this study can clearly distinguish people and ships in the
fusion results. In summary, compared with the other four methods, DDGANSE contains
rich texture information on top of the obvious contrast, as shown in the first row and last
column of Figure 5. In our results, the contrast between the person (the target) and the tree
(the background) is very strong, and tree texture details are equally clear.
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(2) Quantitative Assessment of Fusion Networks
Quantification results for DDGANSE for different performance metrics is demon-

strated in Table 2. According to performance metrics in Table 2, It is clear that our method
of DDGANSE has the best fusion performance in comparison with other advanced methods,
including LPP , LP , CVT , DTCWT , GTF , CNN, FusionGAN, GANMcC, PMGI, DDCGAN,
RFN-Nest , and RCGAN . The SSIM is 0.86, PSNR is 19.60, EN is 7.09, SCD is 1.79, CC
is 0.52, and SD is 0.13. The detail of the quantitative results can be seen in Figures 8 and 9.
Based on the above results, the fusion method of DDGANSE has the obvious advantages
of strong contrast and rich texture details over former methods.

Table 2. Quantification results for our proposed method and state-of-art fusion methods (the best
value is marked in yellow, and the second-best value is marked in red).

Method LPP LP CVT DTCWT GTF CNN FusionGAN GANMcC PMGI DDCGAN RFN-Nest RCGAN Ours
SSIM 0.63 0.59 0.76 0.79 0.71 0.83 0.81 0.84 0.72 0.56 0.83 0.77 0.86
PSNR 16.8 17.4 16.2 17.8 16.8 18.4 16.6 17.5 18.1 16.3 18.5 18.8 19.6

EN 6.84 6.85 6.74 6.69 6.98 7.29 6.51 6.96 6.99 6.09 6.84 6.89 7.09
SCD 1.64 1.71 1.66 1.67 1.05 1.73 1.54 1.73 1.56 1.39 1.83 1.63 1.79
CC 0.45 0.47 0.47 0.48 0.30 0.43 0.43 0.50 0.46 0.34 0.51 0.49 0.52
SD 0.12 0.13 0.12 0.11 0.18 0.19 0.07 0.12 0.11 0.05 0.08 0.09 0.13
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(3) Advantages of the DDGANSE Architecture
As seen in Table 3, each of the technological innovations in the DDGANSE method

improves the performance of the image fusion and the performance of the network. To
further evaluate our method, DDGANSE without two discriminators (only the generator),
without one discriminator (generator with only one discriminator), and without SE (two
discriminators but a generator without SE) are implemented individually. As shown in
Figure 10, our networks are superior to the single-discriminator GAN. A network with
only one discriminator can only retain the advantages of one source image in the fused
image. For example, the advantages of richly detailed information from the visible image
can be retained, but the contrast would be poor, as shown in the red boxes in the third
and sixth columns in Figure 10. Alternatively, only the contrast advantage of the IR image
can be retained while the texture details are neglected, as shown in the yellow boxes in
the third and sixth columns in Figure 10. In this study, a dual discriminator network is
presented to preserve both the detail and contrast of the source image in the fused image. In
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addition, we also include an SE module in the generator part of the network. In Figure 10,
the sixth column is better than the fifth column, indicating that the SE module can help
the network learn important feature information and improve the performance of the
generator. This is because the SE can facilitate learning the correlation between channels,
which allows the image generated by the generator to contain more information from the
source image. The quantitative results are shown in Figure 11. It is clear that DDGANSE
exhibits better performances.

Table 3. Quantification results is for our proposed method with different innovative components.
(The best value is marked in yellow, and the second-best value is marked in red).

Method DDGANSE (Ours) Without Two
Discriminators

Without One
Discriminator

Without
SE

SSIM 0.86 0.63 0.57 0.73
PSNR 19.60 18.05 18.47 18.82

EN 7.09 6.59 6.67 7.11
SCD 1.79 1.47 1.51 1.73
CC 0.52 0.46 0.51 0.41
SD 0.13 0.09 0.10 0.11
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Figure 10. Comparison of the segmentation results of DDGANSE with different innovative compo-
nents. From left to right: visible images, infrared images, and fused results of DDGANSE without
two discriminators, DDGANSE without one discriminator, DDGANSE without the SE module, and
the complete DDGANSE.

(4) Complexity Evaluation
We calculated the running time required to apply the above method for image fusion,

which can illustrate the complexity of the DDGANSE.
In the training process, the generator and discriminator are trained many times. At this

point, the overall number of parameters is the sum of the parameters in the generator and
discriminator, which is approximately 3.168 M. These parameters require approximately
180 min for optimization. In the testing process, only the generator is used to generate
fused images, and the number of parameters used for testing is 1.867 M. Since the generator
is used to complete the task of image fusion, comparing the average running times of
various methods during the testing phase gives an indication of the time complexity of the
methods. The results are presented in Table 4. Even though the operational efficiencies of
FusionGAN and LP are slightly higher than that of DDGANSE, as can be seen from Table 2,
the fusion effect of our method is superior compared to both methods.



Photonics 2022, 9, 150 14 of 16Photonics 2022, 9, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 11. Quantification results for DDGANSE for different performance metrics. 

(4) Complexity Evaluation 
We calculated the running time required to apply the above method for image fusion, 

which can illustrate the complexity of the DDGANSE. 
In the training process, the generator and discriminator are trained many times. At 

this point, the overall number of parameters is the sum of the parameters in the generator 
and discriminator, which is approximately 3.168 M. These parameters require approxi-
mately 180 min for optimization. In the testing process, only the generator is used to gen-
erate fused images, and the number of parameters used for testing is 1.867 M. Since the 
generator is used to complete the task of image fusion, comparing the average running 
times of various methods during the testing phase gives an indication of the time com-
plexity of the methods. The results are presented in Table 4. Even though the operational 
efficiencies of FusionGAN and LP are slightly higher than that of DDGANSE, as can be 
seen from Table 2, the fusion effect of our method is superior compared to both methods. 

Table 4. Average running times of different methods (unit: second). 

Method LP CVT DTCWT GTF CNN FusionGAN 
 0.089 1.224 0.394 4.369 51.250 0.159 

Method GANMcC PMGI DDCGAN RFN-Nest RCGAN DDGANSE (Ours) 
 0.331 0.369 0.469 0.332 0.452 0.321 

4. Conclusions 
In the present study, an efficient infrared and visible image fusion method called 

DDGANSE is proposed. Based on the characteristics of visible and infrared images, it is 
desirable that the fused images have the high contrast of infrared images and rich texture 
details of visible images. The proposed DDGANSE method utilizes a generator with two 
paths and two discriminators to realize a fusion task. Extensive experiments on the TNO 
dataset indicated that the best performance can be achieved using our proposed 
DDGANSE method compared to other similar reported methods in the literature. 

Author Contributions: Conceptualization, Z.S. and H.L.; methodology, J.W. and J.R.; software, J.R..; 
validation, J.W. and J.R.; formal analysis, J.W. and J.R.; investigation, Z.L.; resources, J.W.; data cu-
ration, J.R.; writing—original draft preparation, J.R.; writing—review and editing, J.W. and Y.E.M.; 
visualization, J.R. and Z.Y.; supervision, J.W. and C.L.; project administration, Q.H. and H.X. All 
authors have read and agreed to the published version of the manuscript. 

Figure 11. Quantification results for DDGANSE for different performance metrics.

Table 4. Average running times of different methods (unit: second).

Method LP CVT DTCWT GTF CNN FusionGAN
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Method GANMcC PMGI DDCGAN RFN-Nest RCGAN DDGANSE (Ours)
0.331 0.369 0.469 0.332 0.452 0.321

4. Conclusions

In the present study, an efficient infrared and visible image fusion method called
DDGANSE is proposed. Based on the characteristics of visible and infrared images, it is
desirable that the fused images have the high contrast of infrared images and rich texture
details of visible images. The proposed DDGANSE method utilizes a generator with two
paths and two discriminators to realize a fusion task. Extensive experiments on the TNO
dataset indicated that the best performance can be achieved using our proposed DDGANSE
method compared to other similar reported methods in the literature.
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