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Abstract: Fringe projection profilometry (FPP) has been broadly employed for three-dimensional
shape measurements. However, the measurement accuracy suffers from gamma nonlinearity. This
paper proposes an intensity-averaged double three-step phase-shifting (IDTP) algorithm making use
of color-encoded fringe projection, which does not require complex calibration processes or extra
fringe patterns. Specifically, two phase maps with π/2 phase shift are encoded into the red and
blue channels of color fringe patterns. The average fringe patterns of the red and blue channels are
approximately in sinusoidal waveform with little harmonics, thus can be directly used for accurate
phase recovery. Additionally, an adaptive weight is also estimated for average operation to suppress
the effect of color crosstalk. Both simulations and experiments demonstrate that the proposed IDTP
algorithm can effectively eliminate nonlinear phase errors.

Keywords: fringe projection profilometry; phase-shifting algorithm; gamma nonlinearity

1. Introduction

Non-contact optical 3D surface imaging techniques have been extensively applied
into various fields, such as mechanical engineering, industry inspection, and biomedical
science [1–3]. As an important 3D surface imaging technique, FPP is one of the research
hotspots and attracts much attention [4–6]. In general, a standard FPP system consists of
a projection unit and an acquisition unit, which requires to project one or more designed
fringe patterns onto the measured objects, capture the deformed fringe patterns of the
measured objects, and extract the phase distribution for 3D reconstruction. Phase-shifting
algorithms that require three or more fringe patterns are usually used for phase extraction
because of high accuracy and high robustness [7–10]. However, the gamma nonlinearity
will distort the intensities of the fringe patterns, then lead to nonlinear phase errors into the
extracted phase distribution, and further result in 3D measurement errors [11].

Many methods have been developed for gamma correction during the past two
decades [12–16]. Some methods require some complex calibration processes. For instance,
Zhang et al. [17] established a look-up table between the wrapped phase and the nonlinear
phase error. Hoang et al. [18] combined three-step and large-step phase-shifting algorithms
to calibrate the gamma value. Liu et al. [19] constructed an intensity pre-compensation
look-up table to modify the projected fringe patterns. Zhang et al. [20] firstly calibrated
the amplitudes of harmonics, and then added specific harmonics into the projected fringe
patterns. Yu et al. [21] used the probability distribution of the wrapped phase to estimate the
gamma value. Subsequently, Liu et al. [22] also used the phase probability distribution to
estimate the harmonic coefficients for phase error compensation. However, the requirement
of the calibration processes limits the flexibility.

Some other methods require extra fringe patterns. For instance, Huang et al. [23]
proposed a phase-averaged double three-step phase-shifting (PDTP) algorithm that used
two groups of fringe patterns to calculate two phase maps with π/3 phase shift. Since
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two phase maps have nearly opposite errors, the phase error could be reduced from the
average phase map. Based on the similar model, several double N-step phase-shifting
algorithms have been developed to average two phase maps with π/N phase shift for
phase error reduction [24–26]. Nevertheless, the measurement speed decreases because
of the requirement of extra fringe patterns. Alternatively, Cai et al. [27,28] used Hilbert
transform on the original fringe patterns to generate extra fringe patterns, and then their
phase maps with opposite errors were averaged for gamma correction. However, the
Hilbert transform-based method is sensitive to sharp edges or discontinuous parts.

To address the above problem, this paper proposes an effective IDTP algorithm based
on color-encoded fringe projection without requiring complex calibration processes or
extra fringe patterns. Two phase maps with π/2 phase shift are encoded into the red and
blue channels of color fringe patterns. Differing from the PDTP algorithm that averages
two phase maps with π/N phase shift for phase error compensation, the IDTP algorithm
directly averages the intensities of two fringe patterns with π/2 phase shift and recovers
the accurate phase map from the average fringe patterns. Additionally, to suppress the
effect of color crosstalk, we also estimate an adaptive weight for the average operation.
Both simulations and experiments have been carried out, and their results demonstrate the
efficiency of the proposed IDTP algorithm.

2. Principle
2.1. Phase-Averaged Double Three-Step Phase-Shifting (PDTP) Algorithm

Three-step phase-shifting algorithm only requires three fringe patterns, and is sensitive
to the gamma nonlinearity. For the three-step phase-shifting algorithm, the captured fringe
patterns in sinusoidal waveform can be mathematically described as:

In(x, y) = A(x, y) + B(x, y) cos [φ(x, y) + δn] (1)

where n = 1, 2, 3; δ1 = 0, δ2 = 2π/3, and δ3 = 4π/3 are the phase shifts; A(x, y) is the
average intensity; B(x, y) is the intensity modulation; and φ(x, y) is the phase relating to
the 3D surface information. For convenience, the image coordinate (x, y) will be omitted in
the following. Solving the above equations, we can compute the wrapped phase as:

φ = − tan−1

{
∑3

n=1 [A + B cos (φ + δn)] sin (δn)

∑3
n=1 [A + B cos (φ + δn)] cos (δn)

}
(2)

Note that the phase will be wrapped when we use the above equation that contains
the arc tangent function. However, the captured fringe patterns will be distorted due to
the gamma nonlinearity of the projector or the camera. The distorted fringe patterns in a
non-sinusoidal waveform can be described as:

I′n = [A + B cos (φ + δn)]
γ (3)

where γ is the gamma value. Based on the Fourier series expansion, the distorted fringe
patterns can be regarded as the ideal fringe patterns with harmonics as:

I′n = a0 + ∑∞
m=1 am cos [m(φ + δn)] (4)

where am is the amplitude of the m-th harmonic. In general, as the harmonic order increases,
the amplitude am decreases [29]. Based on three-step phase-shifting algorithm, we can
compute the distorted phase as:

φ′ = − tan−1

[
∑3

n=1 {a0 + ∑∞
m=1 am cos [m(φ + δn)]} sin (δn)

∑3
n=1 {a0 + ∑∞

m=1 am cos [m(φ + δn)]} cos (δn)

]
(5)
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Since the amplitudes of high-order harmonics are usually very small, we can ignore
m ≥ 6 harmonics, and the distorted phase can be further approximated as:

φ′ ≈ tan−1
[

a1 sin (φ)− a2 sin (2φ) + a4 sin (4φ)− a5 sin (5φ)

a1 cos (φ) + a2 cos (2φ) + a4 cos (4φ) + a5 cos (5φ)

]
(6)

Then, the nonlinear phase error can be approximated as:

∆φ′ = φ′ − φ ≈ − tan−1
[

(a2−a4) sin (3φ)+a5 sin (6φ)
a1+(a2+a4) cos (3φ)+a5 cos (6φ)

]
≈ −c1 sin (3φ)− c2 sin (6φ) ≈ −c1 sin (3φ)

(7)

where c1 and c2 are two constants. It can be found that the frequency of the nonlinear phase
error is three times that of the wrapped phase. Based on this characteristic, Huang et al. [23]
proposed the PDTP algorithm for phase error compensation. The basic idea is that, if we
shift the original phase by π/3 to obtain the shifted phase, the nonlinear phase error of the
shifted phase can be approximated as:

∆φ′′ ≈ −c1 sin [3(φ + π/3)] = c1 sin (3φ) (8)

It is evident that the original phase and the shifted phase have approximate opposite
errors ∆φ′′ ≈ −∆φ′. Therefore, the nonlinear phase errors can be compensated by simply
averaging the original phase and the shifted phase. Without increasing the number of
required fringe patterns, two phase maps with π/3 phase shift are encoded into the red and
blue channels of three color fringe patterns to conduct the PDTP algorithm in this paper for
comparison.

2.2. Intensity-Averaged Double Three-Step Phase-Shifting (IDTP) Algorithm

Instead of averaging two phase maps with π/3 phase shift for gamma correction, this
paper proposes an effective IDTP algorithm that directly averages two groups of fringe
patterns for accurate phase recovery. Figure 1 shows the principle of the proposed IDTP
algorithm. To be specific, two phase maps with π/2 phase shift are encoded into the red
and blue channels of color fringe patterns, which can be described as:

In,r = A + B cos (φ + δn) (9)

In,b = A + B sin (φ + δn) (10)
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where the subscripts r and b denote red and blue channels, respectively. The green channel
carries no information, and we set In,g = 0. The red and blue channels of the distorted
fringe patterns can be, respectively, expanded into Fourier series as:

I′n,r = [A + B cos (φ + δn)]
γ = a0 + ∑∞

m=1 am cos [m(φ + δn)] (11)

I′n,b = [A + B sin (φ + δn)]
γ = a0 + ∑∞

m=1 am cos [m(φ + δn − π/2)] (12)

Figure 2a,b illustrates the red and blue channels of the distorted fringe patterns in a
non-sinusoidal waveform. Therefore, the average fringe patterns with harmonics can be
computed as:

I′n,a = (I′n,r + I′n,b)/2
= a0 + ∑∞

m=1 am cos (mπ/4) cos [m(φ + δn − π/4)]
= a0 + ∑∞

m=1 a′m cos [m(φa + δn)]

(13)

where a′m = am cos (mπ/4) can be also regarded as the amplitude of the m-th harmonic, and
φa = φ−π/4. Clearly, the average fringe patterns described by Equation (13) have a similar
Fourier series form as the distorted fringe patterns described by Equation (4). As illustrated
in Figure 2c, the average fringe patterns have an approximate sinusoidal waveform. If we
continue to use three-step phase-shifting algorithm to compute the wrapped phase, the
nonlinear phase error can be approximated as:

∆φ′a = φ′a − φa ≈ − tan−1
[

(a′2 − a′4) sin (3φa) + a′5 sin (6φa)

a′1 + (a′2 + a′4) cos (3φa) + a′5 cos (6φa)

]
(14)
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Substituting m = 1, 2, 4, 5 into a′m = am cos (mπ/4), we can obtain:
a′1 = a1 cos (π/4) =

√
2a1/2

a′2 = a2 cos (2π/4) = 0
a′4 = a4 cos (4π/4) = −a4
a′5 = a5 cos (5π/4) = −

√
2a5/2

(15)

As for the average fringe pattern, the first order harmonic a′1 and the fifth order
harmonic a′5 are smaller than that of the red channel of the distorted fringe patterns; the
second order harmonic a′2 is zero; and the forth order harmonic a′4 is opposite to that of the
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red channel of the distorted fringe patterns. Substituting Equation (15) into Equation (14),
we can rewrite the nonlinear phase error as:

∆φ′a ≈ − tan−1

[ √
2a4 sin (3φa)− a5 sin (6φa)

a1 −
√

2a4 cos (3φa)− a5 cos (6φa)

]
(16)

The nonlinear phase error was greatly reduced since the second harmonic disappears
from the numerator. Figure 2d illustrates the undistorted phase, and the distorted phase
of the red channel and the blue channel, and the corrected phase of their average fringe,
respectively. Clearly, the corrected phase is very close to the undistorted phase. Figure 2e
illustrates the corresponding nonlinear phase errors of the red channel, the blue channel,
and their average fringe, respectively. It is evident that the ∆φ′a of I′n,a is much smaller than
the ∆φ′r of I′n,r or the ∆φ′b of I′n,b, which theoretically validates the success of the proposed
IDTP algorithm.

2.3. Influnce of the Color Crosstalk

However, most color projectors and color cameras are usually designed to have some
spectra overlaps between color channels to avoid blind regions in the spectrum, which will
change the intensity distribution of color fringe patterns [30–32]. This phenomenon is often
referred as color crosstalk or color coupling. In general, the color fringe patterns with color
crosstalk can be expressed as: I ′′n,r

I ′′n,g
I ′′n,b

 =

 κrr κgr κbr
κrg κgg κbg
κrb κgb κbb

 I′n,r
I′n,g
I′n,b

 (17)

where κij(i, j = r, g, b) are color crosstalk factors, and κrb, κbr are usually far less than κrr, κbb.
Because the green channel is I′n,g = (In,g)

γ = 0, the red and blue channels of the color
fringe patterns with color crosstalk can be further expressed as:

I ′′n,r = κrr I′n,r + κbr I′n,b (18)

I ′′n,b = κrb I′n,r + κbb I′n,b (19)

To suppress the effect of color crosstalk, we introduce an adaptive weight α for I ′′n,b.
Therefore, the average fringe patterns of I ′′n,r and αI ′′n,b can be calculated as:

I ′′n,a =
[

I′n,r + αI′n,b

]
/2 =

[
(κrr + ακrb)I′n,r + (κbr + ακbb)I′n,b

]
/2 (20)

If we assume that η = κrr + ακrb = κbr + ακbb, the average fringe patterns with
harmonics can be described as:

I ′′n,a = η I′n,a = η
{

a0 + ∑∞
m=1 a′m cos [m(φa + δn)]

}
(21)

It can be concluded that the nonlinear phase error ∆φ
′′
a of I ′′n,a will be equal to the

nonlinear phase error ∆φ′a of I′n,a because I ′′n,a is proportional to I′n,a, and ∆φ
′′
a can be also

described as Equation (16). The key is how to correctly determine the adaptive weight α. In
general, κrr, κbb � κrb, κbr ≈ 0, and we can estimate the adaptive weight α as:

α =
κrr − κbr
κbb − κrb

≈ κrr + κbr
κbb + κrb

≈ ∑N
n=1 I ′′n,r

∑N
n=1 I ′′n,b

(22)

Especially, if no color crosstalk is considered, or κrb = κbr = 0, we have α = κbb/κrr.
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3. Simulations

Some simulations were carried out to compare the proposed IDTP algorithm and the
conventional PDTP algorithm. The peaks function was used to simulate the measured object.
The resolution of the captured fringe patterns was set to 450 × 450 pixels. The period of the
fringe patterns was set to 150 pixels. The IDTP algorithm was implemented by encoding
two phase maps with π/2 phase shift into the red and blue channels of color fringe patterns.
For comparison, the PDTP algorithm was also implemented by encoding two phase maps
with π/3 phase shift into the red and blue channels of the color fringe patterns. Note that
the adaptive weight was assumed to be same at all pixels of the measured object, and thus
its mean value was calculated to suppress the effect of color crosstalk.

3.1. Ignoring Color Crosstalk

Firstly, the color crosstalk was ignored, and we set κrr = κbb = 1, κrb = κbr = 0, and
γ = 2.5. Figure 3a shows the color fringe generated by the IDTP algorithm. Figure 3b–d
show the phase errors of the red channel, the blue channel, and the average fringe, respec-
tively. To quantify the accuracy, we further computed the root-mean-square (Rms) phase
errors of Figure 3b–d, which were about 0.2406, 0.2397, and 0.0024 rad, respectively. The
Rms phase error of Figure 3d is far less than that of Figure 3b,c. In contrast, Figure 3e shows
the color fringe generated by the PDTP algorithm. Figure 3f–h shows the corresponding
phase errors of the red channel, the blue channel, and the average phase, respectively. We
also computed the Rms phase error of Figure 3f–h, which were about 0.2406, 0.2427, and
0.0390 rad, respectively. Similarly, the Rms phase error of Figure 3h is far less than that
of Figure 3f,g, but higher than that of Figure 3d. These results validate that the proposed
IDTP algorithm can eliminate the nonlinear phase error and achieve higher accuracy than
the conventional PDTP algorithm.
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Figure 3. Comparison results when ignoring color crosstalk. (a) Color fringe generated by the
proposed IDTP algorithm, and the corresponding phase errors of (b) the red channel, (c) the blue
channel, and (d) the average fringe, respectively. (e) Color fringe generated by the conventional
PDTP algorithm, and the corresponding phase errors of (f) the red channel, (g) the blue channel, and
(h) the average phase, respectively.

3.2. Considering Color Crosstalk

Secondly, the color crosstalk was considered, and we set κrr = 0.8, κbb = 0.9,
κrb = κbr = 0.1, and γ = 2.5. Figure 4a shows the color fringe generated by the IDTP
algorithm. Figure 4b–d show the phase errors of the red channel, the blue channel, and
the average fringe, respectively, and the Rms phase errors are about 0.2087, 0.2114, and
0.0045 rad, respectively. Figure 4e shows the color fringe generated by the PDTP algorithm.
Figure 4f–h shows the corresponding phase errors of the red channel, the blue channel, and
the average phase, respectively, and the Rms phase errors are about 0.2118, 0.2168, and
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0.0505 rad, respectively. These results confirm the accuracy of the proposed IDTP algorithm
compared with the conventional PDTP algorithm.
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Figure 4. Comparison results when considering color crosstalk. (a) Color fringe generated by the
proposed IDTP algorithm, and the corresponding phase errors of (b) the red channel, (c) the blue
channel, and (d) the average fringe, respectively. (e) Color fringe generated by the conventional
PDTP algorithm, and the corresponding phase errors of (f) the red channel, (g) the blue channel, and
(h) the average phase, respectively.

3.3. Different Gamma Values

Moreover, we also explored the accuracy of the IDTP algorithm and the PDTP algo-
rithm under different gamma values, γ = [1, 4]. The color crosstalk was set as κrr = 0.8,
κbb = 0.9, κrb = κbr = 0.1. Figure 5a illustrates the Rms phase errors of the IDTP algorithm.
In contrast, Figure 5b illustrates the Rms phase errors of the PDTP algorithm. It is evident
that the phase errors are almost proportional to the gamma value for both the IDTP algo-
rithm and the PDTP algorithm. For the IDTP algorithm, the Rms phase error of the average
fringe is very small, below 0.02 rad, even γ = 4.0. In contrast, for the PDTP algorithm, the
Rms phase error of the average phase is larger, and close to 0.1 rad when γ = 4.0. These
results confirm that the proposed IDTP algorithm can achieve higher accuracy than the
conventional PDTP algorithm under different gamma values.
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4. Experiments

To further compare the proposed IDTP algorithm and the conventional PDTP algo-
rithm, some experiments were also carried out. A standard FPP system, including a DLP
projector and a CMOS camera, was built up. The projector was Light-Crafter 4500 with
a resolution of 912 × 1140 pixels. The camera was Basler a2A1920-160ucBAS with a reso-
lution of 1920 × 1200 pixels. The lens mounted on the front of the camera was Computar
M1214-MP2 with focal length of 12 mm. The period of the fringe patterns was set to 21 pix-
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els. A three-step phase-shifting algorithm was used for the wrapped phase calculation, and
three-frequency phase unwrapping algorithm was used for absolute phase recovery.

Firstly, a white sphere with smooth surface was measured. Color fringe patterns were
generated by the IDTP algorithm and the PDTP algorithm, and then they were projected
by the projector and captured by the camera. Figure 6a shows the distorted color fringe
for the IDTP algorithm. Note that the adaptive weight was calculated by pixel to suppress
the effect of color crosstalk. Figure 6b–d shows the absolute phases recovered from the red
channel, the blue channel, and the average fringe, respectively. Clearly, the absolute phases
shown in Figure 6b,c contain severe ripple errors, which are mainly caused by gamma
nonlinearity. In contrast, the absolute phase shown in Figure 6d contains invisible ripple
errors. In contrast, Figure 6e shows the distorted color fringe for the PDTP algorithm.
Figure 6f–h shows the absolute phases recovered from the red channel, the blue channel,
and the average phase, respectively. Similarly, there are serious ripple errors in Figure 6f,g,
and little ripple errors in Figure 6h. For the sake of clarity, Figure 7 illustrates the cross
section of the recovered absolute phases of the sphere. The absolute phase recovered from
the IDTP algorithm is smoother than that of the PDTP algorithm. It is evident that the
proposed IDTP algorithm can effectively correct the gamma nonlinearity.
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Secondly, a white sculpture was also measured. For the IDTP algorithm, Figure 8a–d
shows the corresponding distorted color fringe, and the absolute phases recovered from the
red channel, the blue channel, and the average fringe, respectively. For the PDTP algorithm,
Figure 8e–h shows the corresponding distorted color fringe, and the absolute phases
recovered from the red channel, the blue channel, and the average fringe, respectively.
Figure 9 illustrates the cross section of the recovered absolute phases of the sculpture. The
experiment results confirm the performance of the proposed IDTP algorithm compared
with the conventional PDTP algorithm.
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Figure 8. Comparison results of the sculpture. (a) Distorted color fringe for the proposed IDTP
algorithm, and the absolute phases recovered from (b) the red channel, (c) the blue channel, and
(d) the average fringe, respectively. (e) Distorted color fringe for the conventional PDTP algorithm,
and the absolute phases recovered from (f) the red channel, (g) the blue channel, and (h) the average
phase, respectively.
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5. Conclusions

An effective IDTP algorithm was proposed for gamma correction without requiring
complex calibration processes or extra fringe patterns. Two phase maps with π/2 phase
shift were encoded into the red and blue channels of color fringe patterns. The average
fringe patterns with little harmonics were used to restore the accurate phase. The effect of
color crosstalk can be suppressed by using an adaptive weight for average operation. The
simulations and experiments indicate that the IDTP algorithm can effectively correct the
gamma nonlinearity. Additionally, the PDTP algorithm conducts phase-shifting algorithm
twice to recover two phase maps, and then computes the average phase map. In contrast,
the IDTP algorithm needs to compute the average intensity of two fringe patterns, and
then conducts the phase-shifting algorithm once to recover a one phase map, thus the
computational efficiency of the IDTP algorithm is higher than that of the PDTP algorithm.
Finally, it is still challenging for the proposed method to measure colorful objects, which
will be studied in our future research.
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