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Abstract: As an important structured beam, vortex beams have a wide range of applications in many
fields. However, conventional vortex beam generators require complex optical systems, and this
problem is particularly serious with regards to focused vortex beam generators. The emergence of
metasurfaces provides a new idea for solving this problem; however, the accompanying chromatic
dispersion limits its practical application. In this paper, we show that the dispersion characteristic of
focused vortex beam generators based on metasurfaces can be controlled by simultaneously manipu-
lating the geometric and propagative phases. The simulation results show that the transmission-type
focused vortex beam generators exhibit positive dispersion, zero dispersion, and negative dispersion,
respectively. This work paves the way for the practical application of focused vortex beam generators.

Keywords: metasurface; vortex beam; dispersion characteristic

1. Introduction

Structured beams have unique amplitude, phase, and polarization distributions, which
are extensively used in many fields and attract a lot of attention [1–4]. As an important
structured beam, the vortex beam has a helical wavefront with a phase singularity in the
center. Since it was first discovered by Allen et al. in 1992 [5], vortex beam has shown great
application potential in optical tweezers technology [6], super-resolution imaging [7], space
optical communication [8], quantum entanglement [9], and other fields. At present, there
are many methods available for generating vortex beams, such as helical phase plates [10],
mode conversion [11], and spatial light modulators [12]. However, these conventional
methods require the construction of relatively bulky optical systems. In particularly, focused
vortex beams require an additional converging optical system. This makes it difficult to
miniaturize the system, which severely limits the application in integrated optics and other
fields.

In recent years, the field of metasurfaces has attracted the interest of a large number
of researchers and has become a research hotspot [13–24]. The metasurface is a two-
dimensional planar structure, composed of periodically arranged meta-atoms and sub-
strates. Benefiting from the different electromagnetic responses of meta-atoms with different
structures, metasurfaces can arbitrarily manipulate the amplitude, phase, and polariza-
tion of the incident electromagnetic field. Therefore, novel optical elements based on
metasurfaces have been widely studied, such as metalens [13,14], beam deflectors [15,16],
holograms [17,18], and so on. In addition, the vortex beam generator based on metasur-
faces has also been reported [19–24]. In 2011, N. Yu et al. demonstrated the generation
of vortex beams based on “V”-shaped meta-atoms [15]. In 2015, Xiaoliang Ma et al. de-
signed and fabricated a focused vortex beam generator (FVBG) based on metasurfaces at
633 nm [19]. In 2016, M. Q. Mehmood et al. used this method of spatial multiplexing to
realize a multi-focus FVBG.

However, similar to other metasurface-based optical elements, the FVBG also suffers
from chromatic aberration. According to Fresnel–Kirchhoff’s diffraction formula, the focal
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length of the vortex beam decreases with increasing wavelength, showing the opposite
dispersion characteristics to traditional refractive lenses. This dispersion characteristic
limits the application of metasurface-based FVBG in broadband systems. In this article,
we show that the chromatic aberration of FVBGs can be eliminated. Furthermore, we
are also able to achieve different kinds of dispersion characteristic, thereby broadening
the application of FVBG in multispectral systems. The simulation results show that the
designed FVBGs exhibit positive dispersion, zero dispersion, and negative dispersion,
respectively. The focal length as a function of wavelength can be controlled artificially.

2. Method

First, we begin with the general form of FVBG based on metasurface, whose phase
profile [25,26] follows

ϕ(r, θ, f ) =
2π f

c
(F−

√
r2 + F2) + lθ, (1)

where r and θ are the polar diameter and polar angle in polar coordinates, respectively; f is
the incident frequency; c is the speed of electromagnetic waves in vacuum; F is the focal
length; and l is the topological charge. Compared to the general vortex beam generator [15],
Equation (1) additionally provides a hyperbolic phase. In this case, the radius of the vortex
beam reaches the minimum at a distance F from the metasurface when the parallel light is
incidentally normal, assuming that the phase modulation capability of the metasurface is
fixed within a certain waveband. At this time, with the gradual increase in the operating
frequency, the focal length of the transmitted wave will gradually become further away,
showing negative dispersion characteristics. In this paper, we refer to this kind of dispersion
characteristic as regular negative dispersion.

In order to keep the focal length of the metasurface unchanged with the frequency of
the incident light, an additional term can be added to Equation (1), modeled on the phase
profile of an achromatic metalens [27,28],

ϕo(r, θ, f ) =
2π fre f

c
(F0 −

√
r2 + F02) + lθ +

2π

c
(F0 −

√
r2 + F02)( f − fre f ), (2)

where fref is the reference frequency, and F0 is the focal length at reference frequency. It can
be seen that the focal length of the vortex beam will remain F0 among the entire waveband,
showing zero dispersion characteristics.

In this case, Equation (2) can be regarded as consisting of three parts. Among them, the
value of the first two parts does not change with the change in the working frequency. These
two parts can be achieved by geometric phase (φPB), also known as the Pancharatnam–Berry
(PB) phase [29–31]. The PB phase is an additional phase, generated when the polarization
state of the incident light changes along different paths on the Poincaré sphere. Its value
has nothing to do with the frequency, but only with the rotation angle of the wave plate. It
follows

φPB = 2σθ, (3)

where σ represents the chirality of the incident light and its value is ±1, θ is the rotation
angle of the wave plate. In addition, when the phase difference between the fast axes
and the slow axes of the wave plate is 180◦, the proportion of the anomalous modes with
changed polarization states reaches the maximum, i.e., 100%. When the phase difference is
gradually away from 180◦, the proportion of normal modes with unchanged polarization
states will gradually increase.

The third part in Equation (2) is a function of the working frequency, and its value
increases linearly with the increasing frequency. This part can be achieved by propagation
phase. The propagation phase originates from the waveguide effect [14,32], and its mag-
nitude is related to the shape, size, and material of the meta-atom. Different from the PB
phase, the value of the propagation phase is also related to the frequency. In particular, we
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refer to the difference between the phase modulation capability of the meta-atoms at the
maximum frequency and the minimum frequency among the entire operating waveband
as phase dispersion value.

In design, we can first find the meta-atoms with suitable phase dispersion values at
different radial positions according to the third part in Equation (2), and then obtain the
rotation angles of these meta-atoms according to Equations (2) and (3). Thus, a FVBG with
zero dispersion in the continuous waveband can be realized.

Further, in order to achieve more diverse dispersion characteristics, the first two
parts of Equation (2) can remain unchanged, and the value of the third part can be more
free [33,34]. Therefore, we can obtain [35]

ϕo(r, θ, f ) =
2π fre f

c
(F0 −

√
r2 + F02) + lθ + ∆adj(r, f ). (4)

The value of ∆adj(r, f ) follows

∆adj(r, f ) =
2π

c
f − fmin

fmax − fmin

[
fmax

(
Fmax −

√
r2 + Fmax2

)
− fmin

(
Fmin −

√
r2 + Fmin

2
)]

, (5)

where fmax and fmin are the boundaries of the working waveband; and Fmax and Fmin are
the focal length of the vortex beam at fmax and fmin, respectively. By setting different Fmax
and Fmin, it can be seen that FVBG with different dispersion characteristics can be obtained.
When Fmax > Fmin, i.e., when the focal length increases with the increase in frequency,
the FVBG exhibits negative dispersion. When Fmax = Fmin, Equation (4) degenerates into
Equation (2), and the FVBG exhibits zero dispersion. When Fma x< Fmin, i.e., the focal
length decreases with the increase in frequency, the FVBG exhibits positive dispersion.
Similarly, when designing FVBG with different dispersion characteristics, the required
phase dispersion value of meta-atoms at different radial positions can be obtained. Then,
the rotation angle can be obtained according to Equation (4).

3. Meta-Atom

The designed metasurfaces for verification work in the mid-infrared waveband
(4.0–5.0 µm). Therefore, the meta-atoms are silicon (Si) nanoposts with ellipse sections on
calcium fluoride (CaF2) substrates, as shown in Figure 1. In the mid-infrared waveband,
the optical absorption of Si and CaF2 is very weak, which can effectively reduce the ohmic
loss. CaF2 has a low refractive index, and can reduce reflection loss when the light is
incident from the substrate side. The high refractive index of Si can effectively confine the
electromagnetic field in the nanoposts and can improve the manipulation efficiency of the
electromagnetic field. Under the condition that the period and the height of the nanoposts
remain unchanged, the meta-atoms have three adjustable parameters, i.e., the major and
minor axes of the ellipses, and the rotation angle of the meta-atoms.

The electromagnetic responses of meta-atoms in the range of 4.0–5.0 µm are simulated
by using the finite difference time domain (FDTD) method [36]. The FDTD method is
proposed by Yee to solve Maxwell’s equations numerically. The basic idea is to make
differential approximation of Maxwell’s curl equation:

∂
→
H

∂t = − 1
µ

(
∇×

→
E + ρ

→
H
)

∂
→
E

∂t = 1
ε

(
∇×

→
H − σ

→
E
) (6)

where µ is the magnetic permeability, ε is the dielectric constant, ρ is the magnetoresistance,
and σ is the conductivity. Then, the time domain response of materials under the electro-
magnetic pulses can be calculated [37–39]. In the simulation, the period of meta-atoms is
set to be 1.9 µm, and the height of nanoposts and substrate are set to be 5 µm and 4 µm,
respectively. The lengths of the major and minor axes of the ellipse are limited within the
range of 0.2–1.8 µm. The electromagnetic wave is normally incident to the meta-atom from
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the substrate side along the Z-axis direction. The periodic boundary condition is used along
the X-axis and Y-axis directions, and the perfectly matched layer (PML) is used along the
Z-axis direction. After obtaining the responses of meta-atoms in the working waveband,
we should filter them. First, structures with low transmittance should be avoided, which
will reduce the working efficiency. Second, it can be known from Equation (5) that ∆adj(r, f )
is a linear function of frequency. Therefore, the phase modulation ability of meta-atoms
should be as close to linear as possible with frequency changing. After filtering, the range
of the phase dispersion value of the meta-atoms reaches 270◦.
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Figure 1. Schematic diagram of the structure of a meta-atom. (a) Perspective view. (b) Front view.
(c) Top view.

4. Result and Discussion
4.1. Regular Negative Dispersion

First, we design a FVBG with regular negative dispersion as a comparison. Here, we
only use the PB phase to satisfy Equation (1). The working waveband is 4.0–5.0 µm, and
the reference wavelength is set to be 4.3 µm. The focal length at the reference wavelength is
70 µm with the topological charge of 1 and the diameter of 72.2 µm. The characteristic is
also simulated using FDTD method, and PML is used in all the three axes. Figures 2 and A1
show the simulated electric field intensity on the x-z plane. The intensities are normalized
to their respective maximum. The value of focal length is shown in Figure A2.
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It can be seen that the FVBG exhibits converging properties in the whole working
waveband. At 4.3 µm, the focal length is 70.4 µm, close to the design value. In addition,
in the entire waveband, the focal length decreases with increasing wavelength, and the
change in focal length reaches 21.0 µm.

The electric field distribution on the respective focal plane between 4.0 and 5.0 µm
is shown in Figure 3. Figure 3a is the normalized electric field intensity, and Figure 3b is
the phase distribution. It can be seen that the intensity distribution at the focal plane is a
ring, different from the focusing characteristics of metalenses. The wavefront is spirally
distributed, and the phase change around the center is 360◦, consistent with the topological
charge of 1. In addition, the background noise gradually increases as it moves away from
the reference wavelength. This phenomenon is due to the fact that the used meta-atom
has the highest cross-polarization conversion ratio at 4.3 µm. As the working wavelength
gradually moves away from 4.3 µm, the phase modulation difference to a set of orthogonal
linear polarization states gradually deviates from 180◦, which causes a decrease in the
cross-polarization conversion ratio, resulting in a decrease in working performance.
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4.2. Zero Dispersion

Next, we design a FVBG with zero dispersion. The working waveband, diameter,
topological charge, reference wavelength, and the focal length at the reference wavelength
remain unchanged. Unlike the FVBG with regular negative dispersion, meta-atoms with
different phase dispersion values are used. The meta-atoms with large phase dispersion
values are placed in the center, while the meta-atoms with small phase dispersion values
are placed at the edge. Figures 4 and A1 show the simulated electric field intensity on the
x-z plane, and the value of focal length is also shown in Figure A2.

It can be clearly seen that the focal position remains almost unchanged in the entire
working waveband. At 4.3 µm, the focal length is 69.4 µm, close to the design value.
Between 4.0 and 5.0 µm, the variation of focal length is only 2.3 µm, just 11 percent of
that of FVBG with regular negative dispersion. The chromatic error is well suppressed.
The electric field distributions at the focal plane between 4.0 and 5.0 µm are shown in
Figure 5. The characteristic of the background noise is similar to that in Figure 3, and the
reasons are the same. In addition, it can be seen that the radius of the focusing ring becomes
significantly larger with the increasing working wavelength. This phenomenon is due to
the fact that the radius of the focusing ring is related to the focal length and the working
wavelength. Among the entire waveband, the focal length remains unchanged. As the
wavelength increases, the diffraction effect will also increase, making the radius of focusing
ring gradually larger, similar to the Airy disk.
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In order to further verify the generality of the method, we design a zero-dispersion
FVBG with a topological charge of 2, and other parameters remain the same. The simulation
results show that in the range of 4.0–5.0 µm, the change in focal length is 2.9 µm, i.e., slightly
larger than that when l = 1. This difference can be considered as the simulation error. The
simulated electric field distribution on the focal plane is shown in Figure A3. It can be seen
that the radius of the focusing ring becomes larger, compared with Figure 5. However, it
still maintains the trend that the focusing ring becomes larger as the wavelength increases.
In the phase distribution diagram, the phase change around the center is 720◦, consistent
with the topological charge of 2.

4.3. Positive Dispersion

In this section, we design a FVBG with positive dispersion, and the parameters remain
the same as that of FVBG with regular negative dispersion. Compared with the FVBG
with zero dispersion, the meta-atom with a large phase dispersion value is still located in
the center, and the meta-atom with a small phase dispersion value is located at the edge.
However, the phase dispersion value of meta-atoms here has a larger gradient along the
radial direction. Figures 6 and A1 show the simulated electric field intensity on the x-z
plane, and the value of focal length is also shown in Figure A2.
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As expected, the focal length increases with the increasing wavelength, similar to
the conventional refractive lenses. Among the entire working waveband, the variation
of the focal length reaches 14.2 µm. With the diameter, the focal length at the reference
wavelength, and the working waveband fixed, the focal length variation is limited by the
range of the phase dispersion value. Figure 7 shows the electric field distributions at the
focal plane between 4.0 and 5.0 µm. It can be seen that the radius of the focusing ring varies
with wavelength in a similar fashion to that of Figure 5a, but with a larger magnitude.
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4.4. Hyper-Negative Dispersion

As for the FVBG with hyper-negative dispersion, the meta-atom with a small phase
dispersion value is located in the center, and the meta-atom with a large phase dispersion
value is located at the edge, demonstrating the opposite arrangement to the FVBG with
zero dispersion. Figures 8 and A1 show the simulated electric field intensity on the x-z
plane, and the value of focal length is also shown in Figure A2.
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Figure 8. The simulated electric field intensity on the x-z plane for the FVBG with hyper-negative
dispersion between 4.0 and 5.0 µm.

We can see that the focal length decreases rapidly with the increasing wavelength,
and the focal length variation reaches 38.3 µm, about 183 percent of that of FVBG with
regular negative dispersion. Similar to the FVBG with positive dispersion, the focal length
variation is also limited by the range of the phase dispersion value here. Figure 9 shows
the electric field distributions at the focal plane between 4.0 and 5.0 µm. In contrast to
Figures 5 and 7, the radius of the focusing ring decreases with the increasing wavelength.
This difference stems from the fact that the effects of shorter focal lengths outweigh the
effects of the increasing wavelength.
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Figure 9. The simulated electric field distribution for the FVBG with hyper-negative dispersion on
the focal plane between 4.0 and 5.0 µm. (a) Normalized intensity. (b) Phase.

5. Conclusions

In conclusion, we show that the dispersion characteristic of a FVBG can be controlled
using metasurfaces. When only the geometric phase is used, the FVBG exhibits regular
negative dispersion characteristics, and its focal length decreases with the increase in
the working wavelength. By using different arrangements of meta-atoms with different
electromagnetic responses, the characteristics of zero dispersion, positive dispersion, and
hyper-negative dispersion are achieved, respectively. In particular, the radius of the ring
on the focal plane of a FVBG with zero dispersion or positive dispersion increases as
the wavelength increases, while the radius of the ring on the focal plane of a FVBG with
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hyper-negative dispersion decreases as the wavelength increases. We believe that our work
can play an important role in the practical application of metasurface-based structured
beam generation.

Author Contributions: Conceptualization, Z.F.; Methodology, X.L.; Writing—original draft, X.L.;
Writing—review and editing, Z.F. All authors have read and agreed to the published version of the
manuscript.
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