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Abstract: We propose a generalized supervised learning algorithm for multilayer photonic spiking
neural networks (SNNs) by combining the spike-timing dependent plasticity (STDP) rule and the
gradient descent mechanism. A vertical-cavity surface-emitting laser with an embedded saturable
absorber (VCSEL-SA) is employed as a photonic leaky-integrate-and-fire (LIF) neuron. The temporal
coding strategy is employed to transform information into the precise firing time. With the modified
supervised learning algorithm, the trained multilayer photonic SNN successfully solves the XOR
problem and performs well on the Iris and Wisconsin breast cancer datasets. This indicates that
a generalized supervised learning algorithm is realized for multilayer photonic SNN. In addition,
network optimization is performed by considering different network sizes.

Keywords: photonic spiking neural network; multilayer spiking neural network; supervised learning;
vertical-cavity surface-emitting lasers; spike timing dependent plasticity

1. Introduction

The brain exhibits great information processing capacity and superb energy efficiency.
Experimental studies have shown that neurons in the brain form complex biological circuits
that transmit information through rapid, spike-based signals [1]. It is widely accepted that
rate coding and temporal coding are the two main spiking encoding approaches [2,3]. Rate
coding is highly robust to peak-to-peak noise, and temporal coding takes full advantage of
the temporal structure, with each spike having a high amount of information [4,5]. However,
it is still controversial whether rate or temporal encoding dominates information encoding
in the brain [6]. Motivated by spike-based neuromorphic systems, spiking neural network
(SNN) was firstly proposed and demonstrated powerful computational capabilities [7].
SNN is more biologically plausible. Many advances of SNN have been reported in the
fields of visual processing, speech recognition, and medical diagnostics [8–12].

An important problem in SNN is the differentiability of the spike trains that consist of
Dirac functions. Compared to the multilayer artificial neural network (ANN), training a
multilayer SNN is still in its infancy. The learning algorithm remains the most challenging
problem for developing multilayer SNN. To solve the problem, some solutions have been
proposed. For instance, the SpikeProp algorithm concentrated on approximating the
neuronal membrane potential function to make it differentiable [13]. SpikeProp extends the
traditional gradient descent-based (GDB) backpropagation algorithm to multilayer SNNs,
making the output neurons fire precisely at the specified timing. Considering that spiking
neurons may adopt multiple spikes to transmit information, a gradient descent-based
multiple-spikes-learning algorithm was proposed and achieved high accuracy [14]. With
binary activations, backpropagation has been adapted for a convolutional network [15]. In
a similar manner, Bellec et al. successfully trained recurrent networks of spiking neurons
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with backpropagation through time using a piecewise linear surrogate derivative and
found the result was comparable with conventional long short-term memory networks [16].
Neftci et al. further introduced a surrogate gradient in training SNN via interpreting SNNs
as recurrent neural networks [17]. As recurrent connections are common in real neural
networks, it will also be very interesting to consider recurrent networks in optical region.
However, the spiking dynamic regime of the optical neuron should be clarified, as feedback
connections may lead to quite complex dynamical phenomena such as chaos [18].

Recent attention has been attached on the spike-timing dependent plasticity (STDP)
rule. The STDP rule is highly biologically interpretable [19,20]. In this rule, the synaptic
weight is strengthened when the postsynaptic neuron fires shortly after the presynaptic neu-
ron, and it is weakened when the postsynaptic neuron fires shortly before the presynaptic
neuron [21]. The amount of change in synaptic weight depends exponentially on tpost–tpre,
where tpost is the firing time of postsynaptic spike, and tpre denotes the firing time of the
presynaptic spike. For example, the BP-STDP algorithm converted the backpropagation up-
date rule into the STDP rule for the time subintervals in multilayer SNNs [22]. The BP-STDP
model exhibited favorable performance in many datasets. In recurrent networks with spik-
ing neuron, there are also relevant works to address discrepancy between the dynamical
properties of synaptic plasticity and the requirements for gradient backpropagation [23,24].

In hardware, photonic SNNs have been employed to process many tasks [25,26]. The
vertical-cavity surface-emitting lasers (VCSELs) have been employed as attractive photonic
neurons in many photonic SNN models. For unsupervised learning, it was pointed out that
photonic SNNs could achieve simple spike pattern learning and recognition tasks based on
the photonic STDP [27]. Different functional processing tasks for photonic SNNs, including
coincidence detection and pattern recognition, were also implemented experimentally [28].
Additionally, Deng et al. reported experimentally on the controllable propagation of
spiking regimes between two interlinked VCSELs [29]. In addition, photonic spiking
memory modules using single and mutually coupled VCSEL-neurons were demonstrated
experimentally [30].

Note that, to solve some complex tasks, a multilayer photonic SNN may be required.
For example, to solve the XOR problem, one approach was to build a multilayer photonic
SNN, where a supervised learning algorithm modified the synaptic weights during training
epochs [31]. Another approach was similar to a combinatorial logic circuit, where the XOR
was decomposed into several basic logic operations, and different parts of the photonic
SNN implemented different logic functions [32]. Feldmann et al. proposed an all-photonic
SNN based on GST-based photonic neural elements, and the model performed well in
the classification task of handwritten digits [33]. Han et al. proposed a supervised learn-
ing algorithm that combined the delay learning and the remote supervised method [34].
However, to the best of our knowledge, a generalized supervised learning algorithm for
multilayer photonic SNNs still remains scarce.

In this study, we propose a generalized supervised learning algorithm for multilayer
photonic SNNs by combing both the STDP rule and the gradient descent mechanism.
The rest is organized as follows. Section 2 presents the multilayer photonic SNN model.
The proposed model includes three parts: the neuron model based on VCSELs-SA, the
architecture of the multilayer photonic SNN, and the generalized supervised learning
algorithm for modifying synaptic weights among each layer. Section 3 describes the
precoding process for the input patterns, and the parameters for training the network.
Then, the trained network is employed to solve the XOR problem. In Sections 4 and 5, we
adopt the Iris dataset and Wisconsin breast cancer dataset to verify the generalization of the
proposed multilayer photonic SNN. We also compare the proposed algorithm with other
state-of-the-art algorithms. In addition, network optimization is performed by examining
the impact of different sizes of input layer and hidden layer. In Section 6, a summary of the
work is given.
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2. Multilayer Photonic SNN Model

In this section, the spiking neuron model based on the VCSEL-SA is described. Ac-
cording to the presented rate equations, the firing processes of pre-synaptic neurons and
post-synaptic neurons are illustrated. Then, the architecture of multilayer photonic SNN
is presented. Finally, the loss function and the weight modification function based on the
STDP rules and the gradient descent mechanism are presented.

2.1. Photonic Spiking Neuron Model

Here, the VCSEL-SA is adopted as a photonic spiking neuron. Here, the VCSEL-SA is
adopted as a photonic spiking neuron, the schematic of which is presented in Figure 1a [35].
This model contains three dimensions, namely, the gain, the absorption, and the light
intensity. Assuming that inputs only cause perturbations in the gain regime, which can be
realized via selectively modulating the gain medium, this two-section laser can emulate
the LIF neuron and generate spiking dynamics due to the different time scales of the three
dimensions, and process information more than ten million times faster than a biological
neuron [35]. The rate equations for the VCSEL-SA are presented as follows [36]:

dSpre,post

dt
= Γaga(na − n0a)Spre,post + Γsgs(ns − n0s)Spre,post −

Spre,post

τph
+ βBrn2

a (1)

dna

dt
= −Γaga(na − n0a)(S − Φpre − Φpost)−

na

τa
+

Ia

eVa
(2)

dns

dt
= −Γsgs(ns − n0s)Spre,post −

ns

τs
+

Is

eVs
(3)

Φpre =
keiτphλprePei(τi, ∆τ)

hcVa
(4)

Φpost =
N

∑
i=1

ωiλiτphPi(t − T)
hcVa

(5)

Ppre,post(t) ≈
hcηcΓaSpre,post(t)Va

τphλpre,post
(6)

The subscripts a and s stand for the gain and absorber regions, respectively. The
subscripts pre and post represent PRE and POST neurons, respectively. Spre,post represents
the photonic density in the cavity. na (ns) denotes the carrier density in the gain (absorber)
region. The other parameters are defined in Table 1.

Equation (4) applies only to the PRE neurons, which represents the precoded stimuli.
As a result, when calculating na in PRE neurons by Equation (2), the expression S − Φpre −
Φpost becomes S − Φpre. The kei, τi and ∆τ in Equation (4) correspond to precoded stimuli
strength, center timing, and temporal duration. According to Equation (4) and Table 1,
precoded stimuli strength is dimensionless, and we consider kei = 2.9×103, ∆τ = 2 ns,
∆τi = 0.05 ns. Equation (5) applies to the POST neurons, which characterizes the weighted
summation. Similarly, S − Φpre − Φpost becomes S − Φpost when calculating na in POST
neurons by Equation (2). The simulation time window for neurons in each layer is [0, T].
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Table 1. Some VCSEL-SA parameters used in the photonic SNN [35,36].

Description Parameter and Value

Gain region cavity volume Va = 2.4 × 10−18 m3

SA region cavity volume Vs = 2.4 × 10−18 m3

Gain region confinement factor Γa = 0.06
SA region confinement factor Γs = 0.05
Gain region carrier lifetime τa = 1 ns
SA region carrier lifetime τs = 100 ps
Gain region differential gain/loss ga = 2.9 × 10−12 m3s−1

SA region differential gain/loss gs = 14.5 × 10−12 m3s−1

Gain region transparency carrier density n0a = 1.1 × 1024 m−3

SA region transparency carrier density n0s = 0.89 × 1024 m−3

Gain region input bias current Ia = 2 mA
SA region input bias current Is = 0 mA
Lasing wavelength λ = 850 nm
Bimolecular recombination term Br = 10 × 10−16 m3s−1

Spontaneous emission coupling factor β = 1 × 10−4

Output power coupling coefficient ηc = 0.4
Photon lifetime τph = 4.8 × 10−12s
Velocity of light c = 3 × 108 ms−1

Planck constant h = 6.63 × 10−34Js

Figure 1. (a) The schematic of a VCSEL-SA in a network [35]. (b1,b2) The gain region carrier density
and the power of output spike of postsynaptic neuron in response to presynaptic spikes.

To illustrate more details of the photonic spiking neuron, we consider the structure
that one postsynaptic neuron is connected with some presynaptic neurons. In Figure 1b1,
at the beginning, na(t) keeps below the threshold (black dashed line), and the post-synaptic
neuron does not fire. When the post-synaptic neuron gets spikes injected (green dashed
lines), na(t) increases. Once the na(t) exceeds the threshold, post-synaptic neuron fires, and
the firing time is recorded as to. After that, na(t) decreases rapidly and then gradually
recovers. As depicted in Figure 1b2, during the training process, there may be spikes that
arrive after the sample label (tN + d > tlabel), and these corresponding synaptic weights
will not be modified.

2.2. Network of Photonic Spiking Neurons

The architecture of the proposed multilayer photonic SNN is depicted in Figure 2. The
fully connected network consists of input, hidden, and output layers, labeled with I, H, and
O, respectively. The number of neurons in each layer is denoted by Ni, Nh, and No, where
No = 1. Here, the input neurons belong to the PRE neurons, and the rate equations are
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Equations (1)–(4) and (6). Additionally, the hidden neurons and output neurons belong to
the POST neurons, since they process the spikes from the previous layer. The rate equations
are similar to those in Equations (1)–(3), (5) and (6). However, note that, for the hidden
neurons, in Equation (5), the terms N and ωi should be replaced by Ni and ωih, respectively.
For the output neuron, in Equation (5), the subscript I, the term N and ωi should be replaced
by j, Nh, and ωjo, respectively.

Φpost =
Ni

∑
i=1

ωihλiτphPi(t − T)
hcVa

(7)

Φpost =
Nh

∑
j=1

ωjoλjτphPj(t − T)
hcVa

(8)

Figure 2. (a) Architecture of the multilayer photonic SNN. (b) The schematic diagram of synaptic
weights modification.

As shown in Figure 2b, external stimuli are firstly pre-processed into the precoded
stimulus signals, and the center timing of the rectangular pulse is recorded as tin. The din
indicates the afferent delay of the precoded rectangular pulses to the input neurons. Each
input neuron has only one afferent connection. For simplicity, we suppose that the neurons
in the input layer can emit up to one spike. The spiking time of input neurons is recorded
as ti. If there is no spike output for a neuron, the spiking time is recorded as T, which means
the ending of the simulation time window.

The ωih (dih) represents the synaptic weight (delay) between an input neuron and a
hidden neuron. The firing time of spike generated by the hidden neuron is recorded as th.
It is possible for neurons in a hidden layer or output layer to generate more than one spike
at once. We adopt the first-to-spike strategy [37]. Namely, the firing time of the first spike is
utilized to denote the result. The tlabel denotes the labels of corresponding input patterns.

For a possible hardware implementation, as shown in Figure 3, the input data are
firstly pre-encoded into pulses with a pulse pattern generator (PPG) and then modulated
to optical carriers from laser diodes (LDs) via MZM modulator array. The output from an
input layer neuron is firstly amplified by a semiconductor optical amplifier (SOA) and then
split into an Nh beam for a full connection to the hidden layer neurons. A similar approach
can be used for more hidden layer connections. The coupling strength from the input to the
hidden neurons and from the hidden to the output can be modified by the variable optical
attenuators (VOA), according to the algorithms implemented in the electronic controller.
Delay lines are arranged for delay compensation of different optical path. Because VCSEL is
easy for large-scale integration, the proposed SNN can be practically scaled in the hardware
architecture [31].
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Figure 3. A hardware architecture of the multilayer photonic SNN. LD: laser diode; PPG: pulse
pattern generator; MZM: Mach-Zehnder modulator; SOA: semiconductor optical amplifier; VOA:
variable optical attenuator; OC: optical coupler; PD: photo detector. The blue line: optical path; the
black line: electronic path.

2.3. The Synaptic Weight Modification Function by Combing the STDP and the Gradient Descent

We use the mean squared error (MSE) as the loss function in a training epoch. MSE is
calculated as the squared loss divided by the number of samples as follows:

MSE =
1
M

M

∑
m=1

(tom − tlabelm)
2 (9)

where M represents the number of samples in the training set or test set, and to − tlabel =
to−tlabel

1 ns means normalization of the time difference. For single input pattern, Equation (9)

becomes (to − tlabel)
2, and we can obtain the derivative of the term to to

∂(to − tlabel)
2

∂to
= 2 to − tlabel (10)

Hence, by combing the STDP rule and the gradient descent rule, the functions for
synaptic weight modifications ∆ω become:

∆ωoh = −η(to − tlabel)× ∆ωSTDP[to − (th + dho)] (11)

∆ωhi = η(to − tlabel)× ∆ωSTDP[th − (ti + dih)] (12)

Finally, the synaptic weights in each layer are updated as follows:

ω(x + 1) = ω(x) + ∆ω (13)

Equation (11) applies to synaptic weights modification between the hidden and output
layers, and Equation (12) applies to synaptic weights modification between the input and
hidden layers. The η indicates learning rate; during the training process, ω is strengthened
or weakened, and we assume that ω keeps non-negative because ω indicates the connection
strength between VCSELs-SA.

3. The XOR Benchmark

The XOR problem is a classic linearly inseparable problem. Minsky et al. first demon-
strated that the problem could not be solved by single layer neural network [38]. The input
patterns of XOR problem are binary symbols “0” and “1”. The firing time of the output
neuron represents the prediction of the network. The input patterns 00, 01, 10, and 11
correspond to 8.5 ns, 10.5 ns, 10.5 ns, and 8.5 ns, respectively.
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3.1. Precoding

To encode real valued features into a temporal pattern, we employ a set of Gaussian
functions [13]. The m denotes the number of Gaussian function, which means each feature
is assigned to m input neurons. The center of the Gaussian functions µ is given by

µi = Imin +
2i − 3

2
· Imax − Imin

m − 2
, i = 1, 2, · · · , m (14)

where m = 4, Imin = −0.1, and Imax = 1.25. The variance of the Gaussian functions is the
same and is calculated as

σ =
1
β
· Imax − Imin

m − 2
(15)

where β is set to 1. As depicted in Figure 4, the horizontal coordinate represents real valued
features, binary symbols “0” and “1”, for example. The vertical coordinate ranges from 0 to
3 ns. Then, each precise vertical coordinate is rounded to its nearest time step, which is set
as 0.05 ns. The quantified result is recorded as tin (as presented in Figure 2b). Especially,
if tin = 0 ns, the corresponding input neuron will not be stimulated; hence, it will fire at
T. Moreover, for a given feature in a dataset, the maximum Imax and minimum Imin are
known. According to Equations (14) and (15), parameters m and β can affect the precoding
result. The simulation results suggest that proper parameters m and β are friendly to the
network performance.

Figure 4. Precoding for XOR input patterns. Two input symbols are transformed into eight signals
for input layer. C-1 to C-4 denote the four Gaussian curves.

3.2. Technical Details

The architecture of the multilayer photonic SNN and learning algorithm applied are
described in Section 2, where Ni = 8, Nh = 6, and No = 1. The simulation time window
is 0–12 ns, and T is 12 ns. The learning rate η is set as 2.2 ×10−2. In simulation, the
sample label 8.5 ns is expanded into the interval (8.3 ns, 8.7 ns), and label 10.5 ns is
expanded into the interval (10.3 ns, 10.7 ns). If the prediction of output neuron falls inside
the corresponding interval, it is considered right. Synaptic weights in the network are
randomly initialized. After each training epoch, the training result and MSE (Equation (9))
are recorded. The training process converges when all the predicted results fall into the
corresponding interval.

3.3. Analysis of Learning Process

Figure 5a illustrates the firing time of output neuron in training. At the beginning, the
network cannot output right predictions. With the synaptic weights modified, the network
correctly predicts for the input patterns “01” (orange) and “10” (yellow) at about the 20th
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epoch. At about the 50th epoch, the network gradually achieves correct predictions of
the input patterns “11” (purple) and “00” (blue). Finally, the learning process ends at the
60th epoch. Figure 5b presents the relationship between loss function MSE and training
epoch, where the vertical axis takes logarithmic coordinates. It can be seen that the value
of MSE drops and eventually converges at the 60th epoch. Figure 6 further presents the
normalized synaptic weights ω over training epochs. Here, ω is calculated as ω−ωmin

ωmax−ωmin
,

where ωmax (ωmin) is the maximum (minimum) of the synaptic weights in training. The
numbers indicate neuron index in different layers. As depicted in Figure 6a1,a2, the initial
synaptic weights are random. Compared with Figure 6a1,a2,c1,c2, during the training
process, many synaptic weights have been modified.

Figure 5. The learning convergence process in XOR benchmark. (a) The firing time of output neuron
to in response to the four input patterns in training. (b) The MSE as a function of training epoch.

Figure 6. The normalized synaptic weights change over training epochs. (a1,a2) The normalized
synaptic weights ωih and ωho after random initialization. (b1,b2) The normalized weights after 30
training epochs. (c1,c2) The normalized weights after convergence.

After the training process, we further adopt the trained weight to perform inference
task. As shown in Figure 7, for 00, 11, the POST fires at 8.5ns. For 01 and 10, the POST fires
at 10.5ns. That is to say, with these trained weights, the XOR task can be successfully solved.
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Figure 7. The output of POST neuron using the trained weight to perform inference task.

4. The Iris Benchmark

Iris flower dataset contains three classes of Iris flowers, Iris setosa, Iris versicolor, and
Iris virginica [39]. Each of the three species consists of 50 samples. There are four features
measured from each sample: the length and the width of the sepals, and the length and
the width of petals. For classification, Iris setosa is linearly separable from the other two,
whereas Iris versicolor and Iris virginica are not linearly separable from each other.

4.1. Technical Details

The 150 samples are randomly divided into two sets, and 100 of them are used for
training and the rest are used for testing. Sample labels of Iris setosa, Iris versicolor, and
Iris virginica are set as 8.5 ns, 10 ns, and 11.5 ns, respectively. As for precoding process,
Imax and Imin are the maximum and minimum value of the sample features, so there are
four pairs of Imax and Imin. We consider the network size as Ni = 24, Nh= 20, and No= 1.
The simulation time window is 0–14 ns, and T is 14 ns. The learning rate is η = 5.5×10−4.
Moreover, a strategy named early stopping is introduced during training in the Iris dataset
and the Wisconsin breast cancer dataset [40]. Early stopping is widely adopted in fully
connected networks to avoid overfitting.

4.2. Classifying the Iris Dataset

Predictions of the network on training set are depicted in Figure 8. Input patterns in
the training set are randomized and predictions are re-sorted according to the true labels.
The firing time of output neuron to (orange circle) means the predicted label, and the blue
circle means true label. The dotted lines at 9 ns and 10.85 ns are the boundaries of the true
labels. Three time intervals [8 ns, 9 ns], [9 ns, 10.85 ns], and [10.85 ns, 12 ns] correspond to
Iris setosa, Iris versicolor, and Iris virginica, respectively. As can be seen in Figure 8, all the
Iris setosa samples are correctly predicted. As labeled by the shading parts in Figure 8, two
samples of Iris versicolor and one sample of Iris virginica are not correctly predicted. The
training accuracy is about 97%. That is to say, the predicting performance of the Iris setosa
samples is better than those of the other two classes.

Figure 9a shows the normalized confusion matrix for test set of Iris dataset. The value
in matrix indicates the average test accuracy. The vertical axis indicates the true label, and
the horizontal axis indicates the predicted label. Numbers 1, 2, and 3 in the coordinate axes
correspond to the three classes of Iris flowers: Iris setosa, Iris versicolor, and Iris virginica.
It can be seen that all the samples that belong to class 1 are predicted correctly. For class 2
(3), 91.7% (95.2%) of the samples are correctly predicted.

Next, we further consider the effect of network size on the network performance.
Figure 10a presents the MSE as a function of epochs for four different sizes of hidden layer,
which are denoted in different colors. Obviously, the MSE values decrease to a low level
and converge for all the cases of network sizes. Namely, the training convergence can be
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achieved for all the considered network sizes. Figure 10b further presents the MSE when
the learning process converges. It can be found that, for Iris benchmark, the proper size of
hidden layer (above 20) contributes to the performance of the network.

Figure 8. Predictions of the trained network on training set. Input patterns in the training set are
randomized, and predictions are ranked according to the true labels. The shadowing parts denote
misclassification samples.

Figure 9. (a) Normalized confusion matrix for Iris dataset. (b) Normalized confusion matrix for
Wisconsin breast cancer dataset.

Figure 10. (a) MSE with different size of hidden layer as a function of training epochs. (b) MSE value
corresponding to the converged training epoch.
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5. The Wisconsin Breast Cancer Benchmark

The Wisconsin breast cancer dataset contains two classes: benign sample and ma-
lignant sample [41]. Considering the original dataset contains 16 samples with missing
data, we adopt the dataset containing the rest 683 samples (444 benign samples and 239
malignant samples). Each sample consists of nine features, and we choose four features in
the dataset (Uniformity Of Cell Size, Uniformity Of Cell Shape, Marginal Adhesion, and
Single Epithelial Cell Size) as input patterns. The 683 samples were randomly divided: 400
of the samples were used for training, and the rest were used for testing. We set labels of
“benign” and “malignant” to 8.5 ns and 11 ns, respectively. For the network size, we set
Ni = 28, Nh = 20, and No = 1. The simulation time window is 0–14 ns, and T is 14 ns. The
learning rate is η = 5.5 × 10−4.

5.1. Classifying the Wisconsin Breast Cancer Dataset Dataset

The spiking time of output neuron in the training process is depicted in Figure 11.
Two different situations in the training process are illustrated. For most input patterns, as
presented in Figure 11a, after some training epochs, the predicted labels come close to the
true label, whereas for some input patterns, as shown in Figure 11b, the training process
converges slowly. The predicted labels come close to the true label after several hundred
training epochs.

Figure 11. The spiking time of output neuron in training process. Examples of (a) quick convergence
and (b) slow convergence are given.

Predictions of the trained network on test set are depicted in Figure 12. The time ranges
[8 ns, 9.3 ns] and [9.3 ns, 12 ns] correspond to the label “benign” and label “malignant”. We
can see from Figure 12 that the prediction performance of the malignant is better than that
of the benign. To further quantify the prediction performance, we present the confusion
matrix for the average test accuracy of breast cancer dataset in Figure 9b. Numbers 2 and 4
in the coordinate axes correspond to “benign” and “malignant”. It can be seen that 94.6%
of the samples belonging to class 2 (benign) are correctly classified, whereas 98.9% of the
samples belonging to class 4 (malignant) are correctly predicted.
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Figure 12. Predictions of the trained network on a test set. Input patterns in the test set are ran-
domized and predictions are ranked according to the true labels. The shadowing parts denote
misclassification samples.

5.2. Learning with the Various Sizes of Input Layer

As can be seen in precoding, a larger input layer implies that the spiking times of the
input neurons are presented in more dispersed distribution, and this may improve the
network performance. Figure 13 shows the accuracy for multilayer photonic SNN with
different sizes of input layer. These networks adopt the same dataset partitioning and the
same size of hidden layer to ensure a fair comparison. It can be seen that both training and
test accuracies are improved, as the Ni grows from 16 to 28. Therefore, properly increasing
the input layer size contributes to the network performance.

Figure 13. The accuracy in different sizes of input layer.

6. Discussion

Then, we tried to estimate the energy consumed in our network on performing Iris
or Wisconsin breast cancer datasets. The energy efficiency in an SNN can be reasonably
simplified by calculating the energy consumed by a spike activity and the number of spikes
generated during processing [42]. Therefore, we can assume that the energy consumed
by a spiking activity in a VCSEL-SA-based neuron is E which could be estimated as
FWHM × Pmax, where FWHM is the full width at half maximum of an optical pulse (which
is about 0.025 ns), and Pmax is the peak power (about 6 mW in simulation, the actual pulse
width will be much larger due to device limitations). The spike numbers generated in the
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inference task of the Iris dataset and breast cancer dataset are about 35 and 39, respectively.
Hence, the total power consumed for the two datasets can be calculated as:

Iris dataset:
(
0.025 × 10−9)× (

6 × 10−3)× 35 = 5.25 pJ
Wisconsin breast cancer dataset:

(
0.025 × 10−9)× (

6 × 10−3)× 35 = 5.85 pJ
However, more reliable calculation should be based on hardware. Unfortunately,

VCSEL-SA is not commercially available.
Table 2 shows a comparison of network architecture, training epoch and mean accuracy

with state-of-the-art techniques. It can be seen that, for the two benchmarks, at most, one
hidden layer is required to achieve high performance. However, for more complex datasets,
a deeper network may be required. For the Iris dataset, DEPT-ESNN shows 99.3% ± 0.2%
accuracy (training set), and SpiFoG shows 97.2% ± 2.1% accuracy (test set). Our algorithm
for multi-layer photonic SNN shows 96.0% ± 1.3% (test set), which is better than the
majority of algorithms in Table 2. For the Wisconsin breast cancer dataset, SpiFoG shows
98.3% ± 0.3% accuracy (training set), and 97.9% ± 0.1% accuracy (test set). Our algorithm
shows 97.3% ± 0.5% (training set). In the network architecture column, the number of
network parameters can be calculated. For the SpikeProp, each synaptic connection consists
of 16 delayed sub-connections. Hence, in order to learn the Iris dataset there are 16 × (50 ×
10 + 10 × 3) = 8480 individual weights that need to be modified. For the SRESN (online), to
learn the Iris dataset, there are 120 + 220 = 340 network parameters to be modified, whereas
for the breast cancer dataset, the number becomes 270 + 432 = 702. For the OSNN, each
synaptic connection also consists of 16 delayed sub-connections.

Table 2. The comparison of performance for proposed algorithm with the state-of-the-art techniques.

Algorithm
Network
Architecture

Convergence
Epoch

Accuracy (%)

Training Set Test Set

Iris dataset
SpikeProp [13] 50-10-3 1000 97.4 ± 0.1 96.1 ± 0.1
SWAT [43] 16-208-3 500 95.5 ± 0.6 95.3 ± 3.6
SRESN (online) [44] 6-11 102 92.7 ± 4.2 93.0 ± 5.7
DEPT-ESNN [45] — — 99.3 ± 0.2 89.3 ± 3.4
SpiFoG [46] — 299 97.4 ± 0.9 97.2 ± 2.1
This work 24-20-1 440 96.8 ± 0.8 96.0 ± 1.3

Wisconsin breast cancer dataset
SpikeProp 64-15-2 1500 97.6 ± 0.2 97.0 ± 0.6
SWAT 9-117-2 500 96.2 ± 0.4 96.7 ± 2.3
SRESN (online) 5-8 306 93.9 ± 1.8 94.0 ± 2.6
OSNN [47] 54-22-2 — 91.1 ± 2.0 90.4 ± 1.8
SpiFoG — 896 98.3 ± 0.3 97.9 ± 0.1
This work 28-20-1 300 97.3 ± 0.5 96.1 ± 0.8

For the Iris dataset, the parameters needed in our algorithm (500) are much fewer
than those for SpikeProp (8480) and SWAT (624). For the breast cancer dataset, the pa-
rameters needed in our algorithm are also fewer than for SpikeProp, SRESN (online), and
OSNN. By taking the training epoch and network architecture into account, for the multi-
layer photonic SNN, our algorithm offers competitive performance for the conventional
SNN algorithms.

We also try to apply the proposed algorithm to the MNIST dataset, which is larger and
more complex. Considering that the VCSLE-SA-based neuron model is computationally
complex, and the training process is time-consuming, we use a relatively simple LIF neuron
model and select 1000 samples from MNIST dataset for training. We first apply Principal
Component Analysis to reduce the dimension of the sample to 20 and use the precoding
method described in Chapter 3. In this way, the input is pre-coded into a 200-dimension
vector. Here, we consider two networks with one hidden layer and two hidden layers, the
network size of which are 200 × 30 × 1 and 200 × 30 × 25 × 1, respectively. However, the
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training accuracy can only reach to 90%, which is most probably because the adjustment of
weight is not based on strict gradient calculation, and the network will be greatly affected
by accumulated errors as the depth of the network increases.

7. Conclusions

In this study, we propose a generalized supervised learning algorithm to train a
multilayer photonic SNN. To achieve high energy efficiency, VCSELs-SA are employed as
LIF neurons in the network considering the ultra-low energy consumption [48]. A modified
learning algorithm combining the STDP rule and the gradient descent mechanisms is
applied. Temporal coding is employed in the network. A precoding process is adopted
for input patterns, and it translates the real valued features of samples into signals that fit
photonic neurons. The First-to-Spike strategy is introduced, so that there is at most one
spike carrying information in each synaptic connection.

We apply the proposed algorithm to train multilayer photonic SNN, and the XOR
problem is solved successfully. In addition, two relatively small datasets including Iris
datasets and the Wisconsin breast cancer dataset are also adopted to demonstrate the
performance of our proposed algorithm. Simulation results clarify that the proposed
algorithm performs well in these datasets, which shows the generalization of the algorithm.
However, as the considered datasets are relatively simple, it cannot be concluded that
this approach is applicable to all practical situations. As a future attempt, by further
optimizing and reducing the running time of the optical SNN model, it is also interesting
and meaningful to consider larger datasets such as MNIST or CIFAR-10. The superiority
of the algorithm will be more significant when the network architecture and the training
epochs are taken into account. The proposed algorithm for photonic SNN also has the
advantages of ultrafast processing rate. Once the input signals are injected into the photonic
SNN, the output classification results can be achieved within several tens of nanoseconds.
With more optimization of the various synaptic connection delays, the processing time may
be reduced further.
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