Sapphire Photonic Crystal Waveguides with Integrated Bragg Grating Structure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Photonic Crystal Waveguides in Bulk Planar Sapphire
3.2. Integrated Bragg Gratings
3.3. Waveguide Attenuation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, J.; Schwarz, C. Advances in femtosecond laser processing of optical material for device applications. Int. J. Appl. Glass Sci. 2020, 11, 480–490. [Google Scholar] [CrossRef]
- Osellame, R.; Cerullo, G.; Ramponi, R. Femtosecond Laser Micromachining; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-23365-4. [Google Scholar]
- Miura, K.; Inouye, H.; Qiu, J.; Mitsuyu, T.; Hirao, K. Optical waveguides induced in inorganic glasses by a femtosecond laser. Nucl. Instrum. Methods Phys. Res. B 1998, 141, 726–732. [Google Scholar] [CrossRef]
- Chen, G.Y.; Piantedosi, F.; Otten, D.; Kang, Y.Q.; Zhang, W.Q.; Zhou, X.; Monro, T.M.; Lancaster, D.G. Femtosecond-laser-written microstructured waveguides in BK7 glass. Sci. Rep. 2018, 8, 10377. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Gattass, R.R.; Maxwell, I.; Ashcom, J.B.; Mazur, E. Optical loss measurements in femtosecond laser written waveguides in glass. Opt. Commun. 2006, 259, 626–630. [Google Scholar] [CrossRef]
- Homoelle, D.; Wielandy, S.; Gaeta, A.L.; Borrelli, N.F.; Smith, C. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett. 1999, 24, 1311–1313. [Google Scholar] [CrossRef]
- Nolte, S.; Will, M.; Burghoff, J.; Tuennermann, A. Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics. Appl. Phys. A 2003, 77, 109–111. [Google Scholar] [CrossRef]
- Florea, C.; Winick, K.A. Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses. J. Lightwave Technol. 2003, 21, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.M.; Miura, K.; Sugimoto, N.; Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 1996, 21, 1729–1731. [Google Scholar] [CrossRef]
- Crespi, A.; Gu, Y.; Ngamsom, B.; Hoekstra, H.J.W.M.; Dongre, C.; Pollnau, M.; Ramponi, R.; van den Vlekkert, H.H.; Watts, P.; Cerullo, G.; et al. Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 2010, 10, 1167–1173. [Google Scholar] [CrossRef]
- Hirao, K.; Miura, K. Writing waveguides and gratings in silica and related materials by a femtosecond laser. J. Non. Cryst. Solids. 1998, 239, 91–95. [Google Scholar] [CrossRef]
- Marshall, G.D.; Ams, M.; Withford, M.J. Direct laser written waveguide-Bragg gratings in bulk fused silica. Opt. Lett. 2006, 31, 2690–2691. [Google Scholar] [CrossRef] [Green Version]
- Hunsperger, R.G. Integrated Optics. Theory and Technology, 6th ed.; Springer: New York, NY, USA, 2009; ISBN 9780387897745. [Google Scholar]
- Yuan, W.-H.; Lv, J.-M.; Cheng, C.; Hao, X.-T.; Chen, F. Waveguides and proportional beam splitters in bulk poly(methyl methacrylate) produced by direct femtosecond-laser inscription. Opt. Mater. 2015, 49, 110–115. [Google Scholar] [CrossRef]
- Pätzold, W.M.; Demircan, A.; Morgner, U. Low-loss curved waveguides in polymers written with a femtosecond laser. Opt. Express 2017, 25, 263–270. [Google Scholar] [CrossRef]
- Perevoznik, D.; Tajalli, A.; Zuber, D.; Patzold, W.; Demircan, A.; Morgner, U. Writing 3D Waveguides with femtosecond pulses in polymers. J. Lightwave Technol. 2021, 39, 4390–4394. [Google Scholar] [CrossRef]
- Roth, G.-L.; Hessler, S.; Kefer, S.; Girschikofsky, M.; Esen, C.; Hellmann, R. Femtosecond laser inscription of waveguides and Bragg gratings in transparent cyclic olefin copolymers. Opt. Express 2020, 28, 18077–18084. [Google Scholar] [CrossRef]
- Roth, G.-L.; Kefer, S.; Hessler, S.; Esen, C.; Hellmann, R. Polymer photonic crystal waveguides generated by femtosecond laser. Laser Photonics Rev. 2021, 15, 2100215. [Google Scholar] [CrossRef]
- Roth, G.-L.; Kefer, S.; Hessler, S.; Esen, C.; Hellmann, R. Integration of microfluidic and photonic components within transparent cyclic olefin copolymers by using fs laser. JLMN 2021, 16, 1. [Google Scholar] [CrossRef]
- Grobnic, D.; Mihailov, S.J.; Smelser, C.W.; Ding, H. Sapphire fiber bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications. IEEE Photon. Technol. Lett. 2004, 16, 2505–2507. [Google Scholar] [CrossRef]
- Habisreuther, T.; Elsmann, T.; Pan, Z.; Graf, A.; Willsch, R.; Schmidt, M.A. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Appl. Therm. Eng. 2015, 91, 860–865. [Google Scholar] [CrossRef]
- Yang, S.; Di, H.; Wang, A. Point-by-point fabrication and characterization of sapphire fiber Bragg gratings. Opt. Lett. 2017, 42, 4219–4222. [Google Scholar] [CrossRef]
- Yang, S.; Homa, D.; Heyl, H.; Theis, L.; Beach, J.; Dudding, B.; Acord, G.; Taylor, D.; Pickrell, G.; Wang, A. Application of sapphire-fiber-bragg-grating-based multi-point temperature sensor in boilers at a commercial power plant. Sensors 2019, 19, 3211. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Xu, B.; Xu, X.; Liao, C.; Wang, Y. Review of femtosecond-laser-inscribed fiber bragg gratings: Fabrication technologies and sensing applications. Photonic Sens. 2021, 11, 203–226. [Google Scholar] [CrossRef]
- Wang, B.; Niu, Y.; Qin, X.; Yin, Y.; Ding, M. Review of high temperature measurement technology based on sapphire optical fiber. Measurement 2021, 184, 109868. [Google Scholar] [CrossRef]
- Kashyap, R. Fiber Bragg Gratings, 2nd ed.; Academic Press: London, UK, 2010; ISBN 978-0-12-372579-0. [Google Scholar]
- Cusano, A. Fiber Bragg Grating Sensors. Recent Advancements, Industrial Applications and Market Exploitation; Bentham Science Publishers: Sharjah, United Arab Emirates, 2011; ISBN 978-1-60805-343-8. [Google Scholar]
- Hill, C.; Homa, D.; Yu, Z.; Cheng, Y.; Liu, B.; Wang, A.; Pickrell, G. Single mode air-clad single crystal sapphire optical fiber. Appl. Sci. 2017, 7, 473. [Google Scholar] [CrossRef]
- Yang, S.; Homa, D.; Pickrell, G.; Wang, A. Fiber Bragg grating fabricated in micro-single-crystal sapphire fiber. Opt. Lett. 2018, 43, 62–65. [Google Scholar] [CrossRef]
- Guo, Q.; Jia, Z.; Pan, X.; Liu, S.; Tian, Z.; Zheng, Z.; Chen, C.; Qin, G.; Yu, Y. Sapphire-derived fiber bragg gratings for high temperature sensing. Crystals 2021, 11, 946. [Google Scholar] [CrossRef]
- Laversenne, L.; Hoffmann, P.; Pollnau, M.; Moretti, P.; Mugnier, J. Designable buried waveguides in sapphire by proton implantation. Appl. Phys. Lett. 2004, 85, 5167–5169. [Google Scholar] [CrossRef] [Green Version]
- Apostolopoulos, V.; Laversenne, L.; Colomb, T.; Depeursinge, C.; Salathé, R.P.; Pollnau, M.; Osellame, R.; Cerullo, G.; Laporta, P. Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire. Appl. Phys. Lett. 2004, 85, 1122–1124. [Google Scholar] [CrossRef]
- Pollnau, M. Waveguide fabrication methods in dielectric solids. In Advances in Spectroscopy for Lasers and Sensing; Di Bartolo, B., Forte, O., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2006; pp. 335–350. ISBN 978-1-4020-4788-6. [Google Scholar]
- Bérubé, J.-P.; Lapointe, J.; Dupont, A.; Bernier, M.; Vallée, R. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire. Opt. Lett. 2019, 44, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.C. Materials for Infrared Windows and Domes: Properties and Performance; SPIE: Bellingham, WA, USA, 1999; ISBN 9780819481016. [Google Scholar]
- Akselrod, M.S.; Bruni, F.J. Modern trends in crystal growth and new applications of sapphire. J. Cryst. Growth 2012, 360, 134–145. [Google Scholar] [CrossRef]
- Blair, D.; Cleva, F.; Man, C. Optical absorption measurements in monocrystalline sapphire at 1 μm. Opt. Mater. 1997, 8, 233–236. [Google Scholar] [CrossRef]
- Dobrovinskaya, E.R.; Lytvynov, L.A.; Pishchik, V. Sapphire. Material, Manufacturing, Applications; Springer: New York, NY, USA, 2009; ISBN 0387856943. [Google Scholar]
- Harris, D.C.; Johnson, L.F.; Cambrea, L.; Baldwin, L.; Baronowski, M.; Zelmon, D.E.; Poston, W.B.; Kunkel, J.D.; Parish, M.; Pascucci, M.R.; et al. Refractive index of infrared-transparent polycrystalline alumina. Opt. Eng. 2017, 56, 77103. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.C.; Broeng, J.; Birks, T.A.; Russell PS, J. Photonic band gap guidance in optical fibers. Science 1998, 282, 1476–1478. [Google Scholar] [CrossRef]
- Knight, J.C. Photonic crystal fibres. Nature 2003, 424, 847–851. [Google Scholar] [CrossRef]
- Knight, J.C.; Birks, T.A.; St. Russell, P.J.; de Sandro, J.P. Properties of photonic crystal fiber and the effective index model. J. Opt. Soc. Am. A 1998, 15, 748–752. [Google Scholar] [CrossRef]
- Jia, Y.; Cheng, C.; Vázquez de Aldana, J.R.; Castillo, G.R.; Del Rabes, B.R.; Tan, Y.; Jaque, D.; Chen, F. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes. Sci. Rep. 2014, 4, 5988. [Google Scholar] [CrossRef] [Green Version]
- Neil, M.A.A.; Juskaitis, R.; Booth, M.J.; Wilson, T.; Tanaka, T.; Kawata, S. Active aberration correction for the writing of three-dimensional optical memory devices. Appl. Optics 2002, 41, 1374–1379. [Google Scholar] [CrossRef]
- Roth, G.-L.; Rung, S.; Esen, C.; Hellmann, R. Microchannels inside bulk PMMA generated by femtosecond laser using adaptive beam shaping. Opt. Express 2020, 28, 5801–5811. [Google Scholar] [CrossRef]
- Chamberlain, G.E.; Day, G.W.; Franzen, D.L.; Gallawa, R.L.; Kim, E.M.; Young, M. Optical Fiber Characterization. Attenuation, Frequency Domain Bandwidth, and Radiation Patterns; National Bureau of Standards: Washington, DC, USA, 1983. [Google Scholar]
- Gosh, G. Refractive Index. In Handbook of Optical Constants of Solids; Palik, E.D., Ed.; Academic Press: Cambridge, MA, USA, 1997; pp. 5–114. ISBN 9780125444156. [Google Scholar]
- Rogers, H.L.; Ambran, S.; Holmes, C.; Smith, P.G.R.; Gates, J.C. In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings. Opt. Lett. 2010, 35, 2849–2851. [Google Scholar] [CrossRef] [Green Version]
- Rogers, H.L. Direct UV-Written Bragg Gratings for Waveguide Characterisation and Advanced Applications. Doctoral Thesis, University of Southampton, Southampton, UK, 2013. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kefer, S.; Roth, G.-L.; Zettl, J.; Schmauss, B.; Hellmann, R. Sapphire Photonic Crystal Waveguides with Integrated Bragg Grating Structure. Photonics 2022, 9, 234. https://doi.org/10.3390/photonics9040234
Kefer S, Roth G-L, Zettl J, Schmauss B, Hellmann R. Sapphire Photonic Crystal Waveguides with Integrated Bragg Grating Structure. Photonics. 2022; 9(4):234. https://doi.org/10.3390/photonics9040234
Chicago/Turabian StyleKefer, Stefan, Gian-Luca Roth, Julian Zettl, Bernhard Schmauss, and Ralf Hellmann. 2022. "Sapphire Photonic Crystal Waveguides with Integrated Bragg Grating Structure" Photonics 9, no. 4: 234. https://doi.org/10.3390/photonics9040234
APA StyleKefer, S., Roth, G. -L., Zettl, J., Schmauss, B., & Hellmann, R. (2022). Sapphire Photonic Crystal Waveguides with Integrated Bragg Grating Structure. Photonics, 9(4), 234. https://doi.org/10.3390/photonics9040234