Mathematical Model of Photodarkening in Rare-Earth-Doped Fiber
Abstract
:1. Introduction
2. Photondarkening Mechanism
3. Model
4. Data Simulation
5. Photodarkening Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Millar, C.A.; Mallinson, S.R.; Ainslie, B.J.; Craig, S.P. Photochromic Behavior of Thulium-Doped Silica Optical Fibers. Electron. Lett. 1988, 24, 590–591. [Google Scholar] [CrossRef]
- Chavez, A.D.G.; Kir’Yanov, A.V.; Barmenkov, Y.O.; Il’Ichev, N.N. Reversible photo-darkening and resonant photo- bleaching of Ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation. Laser Phys. Lett. 2007, 4, 734–739. [Google Scholar] [CrossRef]
- Manek-Hönninger, I.; Boullet, J.; Cardinal, T.; Guillen, F.; Salin, F. Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber. Opt. Express 2007, 15, 1606–1611. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Basu, C.; Boyland, A.J.; Sones, C.; Nilsson, J.; Sahu, J.K.; Payne, D. Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation. Opt. Lett. 2007, 32, 1626–1628. [Google Scholar] [CrossRef]
- Laperle, P.; Chandonnet, A.; Vallee, R. Photoinduced absorption in thulium-doped ZBLAN fibers. Opt. Lett. 1995, 20, 2484. [Google Scholar] [CrossRef]
- Koponen, J.J.; Söderlund, M.; Hoffman, H.J.; Tammela, S.K. Measuring photodarkening from single-mode ytterbium doped silica fibers. Opt. Express 2006, 14, 11539. [Google Scholar] [CrossRef]
- Koponen, J.; Söderlund, M.; Hoffman, H.J.; Kliner, D.; Koplow, J. Photodarkening measurements in large mode area fibers. Proc. SPIE 2007, 6453, 64531E. [Google Scholar] [CrossRef]
- Zhao, N.; Xing, Y.B.; Li, J.M.; Liao, L.; Wang, Y.B.; Peng, J.G.; Yang, L.Y.; Dai, N.L.; Li, H.Q.; Li, J.Y. 793 nm pump induced photo-bleaching of photo-darkened Yb3+-doped fibers. Opt. Express 2015, 23, 25272–25278. [Google Scholar] [CrossRef]
- Ponsoda, J.; Sderlund, M.J.; Koplow, J.P.; Koponen, J.J.; Honkanen, S. Photodarkening-induced increase of fiber temperature. Appl. Opt. 2010, 49, 4139–4143. [Google Scholar] [CrossRef]
- Leich, M.; Fiebrandt, J.; Schwuchow, A.; Jetschke, S.; Unger, S.; Jaeger, M.; Rothhardt, M.; Bartelt, H. Length distributed measurement of temperature effects in Yb-doped fibers during pumping. Opt. Eng. 2014, 53, 066101. [Google Scholar] [CrossRef] [Green Version]
- Griscom, D.L. Self-trapped holes in glassy silica: Basic science with relevance to photonics in space. Proc. SPIE 2011, 8164, 816405. [Google Scholar] [CrossRef]
- Shugan, Z.Q.F. Crystal Color Center Physics; Shanghai Jiaotong University Press: Shanghai, China, 1989. [Google Scholar]
- Rpke, U.; Jetschke, S.; Leich, M. Linkage of photodarkening parameters to microscopic quantities in Yb-doped fiber material. JOSA B 2018, 35, 3126–3133. [Google Scholar] [CrossRef]
- Jetschke, S.; Leich, M.; Unger, S.; Rpke, U. Combined effect of Yb inversion and pump photons on photodarkening in Yb laser fibers: Experiments and model considerations. J. Opt. Soc. Am. B 2019, 36, 2438. [Google Scholar] [CrossRef]
- Dong, L.; Archambault, J.L.; Reekie, L.; Russell, P.; Payne, D.N. Photoinduced absorption change in germanosilicate preforms: Evidence for the color-center model of photosensitivity. Appl. Opt. 1995, 34, 3436–3440. [Google Scholar] [CrossRef]
- Skuja, L. Defects in SiO2 and Related Dielectrics: Science and Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000; ISBN 978-0-7923-6686-7. [Google Scholar]
- Meltz, G.; Morey, W.W.; Glenn, W.H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 1989, 14, 823–825. [Google Scholar] [CrossRef]
- Lee, Y.W.; Broeng, J.; Iii, C.H.; Sinha, S.; Digonnet, M.; Byer, R.L.; Jiang, S. Measurement of high-photodarkening resistance in phosphate fiber doped with 12% Yb2O3. Proc. SPIE Int. Soc. Opt. Eng. 2008, 6873, 68731D. [Google Scholar] [CrossRef]
- Engholm, M.; Norin, L. Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass. Opt. Express 2008, 16, 1260–1268. [Google Scholar] [CrossRef]
- Poyntz-Wright, J.L.; Russell, P.S. Spontaneous relaxation processes in irradiated germanosilicate optical fibres. Electron. Lett. 1989, 25, 478–480. [Google Scholar] [CrossRef] [Green Version]
- Engholm, M.; Norin, L. Comment on “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation”. Opt. Lett. 2008, 33, 1217–1218. [Google Scholar] [CrossRef]
- Carlson, C.G.; Keister, K.E.; Dragic, P.D.; Croteau, A.; Eden, J.G. Photoexcitation of Yb-doped aluminosilicate fibers at 250 nm: Evidence for excitation transfer from oxygen deficiency centers to Yb3+. J. Opt. Soc. Am. B 2010, 27, 2087–2094. [Google Scholar] [CrossRef]
- Engholm, M.; Norin, L.; Aberg, D. Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation. Opt. Lett. 2007, 32, 3352. [Google Scholar] [CrossRef] [PubMed]
- Engholm, M.; Norin, L.; Hirt, C.; Fredrichthornton, S.T.; Petermann, K.; Huber, G. Quenching processes in Yb lasers: Correlation to the valence stability of the Yb ion. Solid State Lasers XVIII Technol. Devices 2009, 7193, 486–492. [Google Scholar] [CrossRef]
- Shubin, A.V.; Yashkov, M.V.; Melkumov, M.A.; Smirnov, S.A.; Dianov, E.M. Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers. In Proceedings of the European Conference on Lasers & Electro-Optics, Munich, Germany, 17–22 June 2007. [Google Scholar]
- Paschotta, R.; Tropper, A.C. Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ = 980 nm with a regard to the Ytterbium ion-pairs’ effect: Comment. Opt. Express 2006, 14, 6981–6982. [Google Scholar] [CrossRef]
- Kir’yanov Alexander, V.; Barmenkov Yuri, O. Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ = 980 nm with a regard to the Ytterbium ion-pairs’ effect: Reply. Opt. Express 2006, 14, 6983–6985. [Google Scholar] [CrossRef]
- Broer, M.M.; Krol, D.M.; Digiovanni, D.J. Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber. Opt. Lett. 1993, 18, 799–801. [Google Scholar] [CrossRef] [PubMed]
- Frith, G.; Carter, A.; Samson, B.; Faroni, J.; Town, G.E. Mitigation of photodegradation in 790 nm-pumped Tm-doped fibers. Proc. SPIE 2010, 7580, 9. [Google Scholar] [CrossRef]
- Schaudel, P.G.B.; Prassas, M.; Auzel, F. Cooperative luminescence as a probe of clustering in Yb3+ doped glasses. J. Alloys Compd. 2000, 300, 443–449. [Google Scholar] [CrossRef]
- Jetschke, S.; Unger, S.; Schwuchow, A.; Leich, M.; Fiebrandt, J.; Jäger, M.; Kirchhof, J. Evidence of Tm impact in low-photodarkening Yb-doped fibers. Opt. Express 2013, 21, 7590–7598. [Google Scholar] [CrossRef]
- Simpson, D.; Gibbs, K.; Collins, S.; Blanc, W.; Dussardier, B.; Monnom, G.; Peterka, P.; Baxter, G. Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibres under 980 nm excitation. Opt. Express 2008, 16, 13781–13799. [Google Scholar] [CrossRef]
- Bonar, J.R.; Vermelho, M.; Mclaughlin, A.J.; Marques, P.; Aitchison, J.S.; Martins-Filho, J.F.; Bezerra, A.G.; Gomes, A.; Araujo, C. Blue light emission in thulium doped silica-on-silicon waveguides. Opt. Commun. 1997, 141, 137–140. [Google Scholar] [CrossRef]
- Jenouvrier, P.; Boccardi, G.; Fick, J.; Jurdyc, A.M.; Langlet, M. Up-Conversion Emission in Rare Earth-Doped Y2Ti2O7 Sol–Gel Thin Films. J. Lumin. 2005, 113, 291–300. [Google Scholar] [CrossRef]
- Barber, P.R.; Paschotta, R.; Tropper, A.C.; Hanna, D.C. Infrared-induced photodarkening in Tm-doped fluoride fibers. Opt. Lett. 1995, 20, 2195–2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Y.B.; Liu, Y.; Lin, X.; Chen, G.; Li, J. Bleaching of photodarkening in Tm-doped silica fiber with deuterium loading. Opt. Lett. 2020, 45, 2534–2537. [Google Scholar] [CrossRef]
- Mejía, E.; Talavera, D.V. Red (632.8-nm) attenuation by a copropagating 1175-nm signal in Tm3+ -doped optical fibers. Opt. Eng. 2007, 46, 105001. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion processes in coupled ion systems. J. Lumin. 1990, 45, 341–345. [Google Scholar] [CrossRef]
- Peretti, R.; Gonnet, C.; Jurdyc, A.M. Revisiting literature observations on photodarkening in Yb3+doped fiber considering the possible presence of Tm impurities. J. Appl. Phys. 2012, 112, 093511. [Google Scholar] [CrossRef] [Green Version]
- Jolly, A.; Vinçont, C.; Pierre, C.; Boullet, J. Modelling the competition between photo-darkening and photo-bleaching effects in high-power ytterbium-doped fibre amplifiers. Appl. Phys. B 2017, 123, 227. [Google Scholar] [CrossRef]
- Nishikawa, H.; Shiroyama, T.; Nakamura, R.; Ohki, Y.; Nagasawa, K.; Hama, Y. Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation. Phys. Rev. B Condens. Matter 1992, 45, 586–591. [Google Scholar] [CrossRef]
- Devine, R.; Arndt, J. Correlated defect creation and dose-dependent radiation sensitivity in amorphous SiO2. Phys. Rev. B Condens. Matter 1989, 39, 5132–5138. [Google Scholar] [CrossRef]
- Laperle, P. Etude de lasers a fibre emettant a 480 nm et du phenomene de coloration dans la fibre de ZBLAN dopee au thulium. Edições Vade-Mécum 2003, 86, 1742003. [Google Scholar]
- Laperle, P.; Desbiens, L.; Foulgoc, K.L.; Drolet, M.; Deladurantaye, P.; Proulx, A.; Taillon, Y. Modeling the photodegradation of large mode area Yb-doped fiber power amplifiers. Spie Lase Lasers Appl. Sci. Eng. 2009, 7195, 550–560. [Google Scholar] [CrossRef]
- Ponsoda, J.J.M.I.; Ye, C.; Koplow, J.P.; Soderlund, M.J.; Koponen, J.J.; Honkanen, S. Analysis of temperature dependence of photodarkening in ytterbium-doped fibers. Opt. Eng. 2011, 50, 111610.111611–111610.111619. [Google Scholar] [CrossRef]
- Hanna, D.C.; Percival, R.M.; Perry, I.R.; Smart, R.G.; Townsend, J.E.; Tropper, A.C. Frequency upconversion in Tm- and Yb:Tm-doped silica fibers. Opt. Commun. 1990, 78, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.R.; Su, X.Y.; Zhang, Y.H.; Zhang, H.W.; Zheng, Y. Progress and Summary of Photodarkening in Rare Earth Doped Fiber. Appl. Sci. 2021, 11, 10386. [Google Scholar] [CrossRef]
- Koponen, J.J.; Söderlund, M.J.; Tammela, S.K.T.; Po, H. Photodarkening in ytterbium-doped silica fibers. Proc. SPIE 2005, 5990, 599008. [Google Scholar] [CrossRef]
Fiber #1 | 2 W | 2.5 W | 2.9 W | 3.5 W | 4.2 W | 5.4 W | 6.7 W |
---|---|---|---|---|---|---|---|
(s−1) | 1.75 × 10−5 | 3.01 × 10−5 | 6.23 × 10−5 | 2.71 × 10−4 | 6.25 × 10−4 | 1.58 × 10−3 | 3.25 × 10−3 |
R2 (%) | 99.18 | 99.09 | 99.75 | 97.22 | 98.84 | 99.26 | 99.82 |
Fiber #2 | 2 W | 2.5 W | 3.2 W | 4 W | 5 W | 6.3 W | 7.9 W | 10 W |
---|---|---|---|---|---|---|---|---|
(s−1) | 1.46 × 10−5 | 5.22 × 10−5 | 2.32 × 10−4 | 4.74 × 10−4 | 8.33 × 10−4 | 1.42 × 10−3 | 1.93 × 10−3 | 3.56 × 10−3 |
R2 (%) | 99.15 | 99.72 | 99.72 | 99.57 | 99.56 | 99.68 | 99.12 | 99.26 |
Fiber | Thulium Concentration (Parts in 106) | Core Diameter | Numerical Aperture |
---|---|---|---|
A | 500 | 3 | 0.21 |
B | 1000 | 3 | 0.21 |
C | 1000 | 1.7 | 0.39 |
D | 11,700 | 3 | 0.21 |
Fiber | A | B | C |
---|---|---|---|
4.939 × 10−3 | 7.431 × 10−3 | 7.021 × 10−2 |
10 W | 12.5 W | 15 W | 17.5 W | |
---|---|---|---|---|
(dB/m) | 13.26 | 17.23 | 24.42 | 31.43 |
(s−1) | 4.953 × 10−3 | 4.964 × 10−3 | 4.81 × 10−3 | 4.645 × 10−3 |
R2 (%) | 84.14 | 89.09 | 88.66 | 94.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Su, X.; Zhang, Y.; Zhang, H.; Sun, Y.; Zheng, Y. Mathematical Model of Photodarkening in Rare-Earth-Doped Fiber. Photonics 2022, 9, 370. https://doi.org/10.3390/photonics9060370
Sun T, Su X, Zhang Y, Zhang H, Sun Y, Zheng Y. Mathematical Model of Photodarkening in Rare-Earth-Doped Fiber. Photonics. 2022; 9(6):370. https://doi.org/10.3390/photonics9060370
Chicago/Turabian StyleSun, Tianran, Xinyang Su, Yunhong Zhang, Huaiwei Zhang, Yabo Sun, and Yi Zheng. 2022. "Mathematical Model of Photodarkening in Rare-Earth-Doped Fiber" Photonics 9, no. 6: 370. https://doi.org/10.3390/photonics9060370
APA StyleSun, T., Su, X., Zhang, Y., Zhang, H., Sun, Y., & Zheng, Y. (2022). Mathematical Model of Photodarkening in Rare-Earth-Doped Fiber. Photonics, 9(6), 370. https://doi.org/10.3390/photonics9060370