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Abstract: A microwave photonic converter based on microwave pre-upconversion is proposed
and experimentally demonstrated. Only a single Mach–Zehnder modulator (MZM) is used in
the converter system so that the complexity and bandwidth limiting of the link can be reduced.
The transmitted and received signals before entering the MZM are firstly upconverted to high
frequency (HF) by a microwave upconverter. The HF and local oscillator (LO) signals are combined
to drive the MZM. Carrier-suppressed double-sideband (CS-DSB) modulation is introduced to the
MZM for effective spectrum utilization. Then, the target signals can be obtained by photoelectric
conversion and beating. Experimental results confirm that the mixing spurs including harmonics and
intermodulation as well as original signals are all out of system frequency band from 0.8–18 GHz, and
the in-band spurious suppression of at least 40 dBc is achieved. In addition, the spurious-free dynamic
range (SFDR) reaches 86.23 dB·HZ2/3 for upconversion and 80.95 dB·HZ2/3 for downconversion.
The proposed microwave photonic converter provides a wideband and high-purity alternative for
the applications of radars and signal processing.

Keywords: electrical pre-upconversion; in-band spurious suppression; microwave photonics

1. Introduction

Microwave converters, which are used to perform frequency conversion including
upconversion and downconversion, are a fundamental part of transceivers and can be
applied in many fields, such as satellite communication, radars, and microwave signal
processing [1]. The upconversion has the process of increasing the intermediate frequency
(IF) to the specified radio frequency (RF) point, and it is used to achieve high-gain launching
and transmission. Meanwhile, the downconversion moves the spatial RF signal to a fixed
IF point through conversion and filtering, which is convenient for the signal processing
circuit to sample and analyze.

Conventionally, the technology of the microwave electrical converter is mature and
has high conversion accuracy [2,3]. However, it suffers from low LO/RF isolation (15 dB)
and high LO drive power (10 dBm) [4,5]. Furthermore, bandwidth limitation and large
insertion loss also restrict the application of the electrical converter [6]. Over the past
30 years, microwave photonic technology [7] received extensive attention due to its ad-
vantages such as wide bandwidth and the immunity to electromagnetic interference. This
means it can be used in many systems, for example, microwave photonic filters [8,9], beam-
forming [10,11], etc. Therefore, a frequency converter based on microwave photonic links
(MPLs) is considered as an effective method to solve the above problems.
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Microwave waveform generators based on microwave photonics are presented in
many papers [12–14], and can be used for synthetic aperture radar (SAR) payload systems
and show the launch capability of the Ka band [15]. The configuration of a microwave
photonic converter system is similar to that of the photonic microwave waveform generator.
Therefore, it is very significant to study the function and mechanism of microwave photonic
converters in signal transmission and processing.

In recent years, all kinds of microwave photonic converters have been proposed and
demonstrated. A pair of Mach–Zehnder modulators (MZMs) in cascade can bring about
infinite isolation theoretically, and the location of two MZMs can be exchanged at will to
realize the input of two signals that are not in the same site [16]. However, the system
is interfered with by lots of mixing spurs because the second MZM could re-modulate
the sidebands achieved by the first MZM. Thus, it severely affects the performance of the
converter. In order to improve the efficiency and linearity of the frequency conversion, a
microwave photonic converter based on parallel MZMs is presented [17]. The RF signal and
local oscillator (LO) signal are modulated separately so that only the 1st-order sidebands
of the RF signal and LO signal exist in the frequency components involved in conversion.
Nevertheless, the interference produced by the instability of parallel path difference can
reduce the mixing capability of the converter. One of the solutions is to utilize MZMs
with an integrated parallel structure such as dual-parallel Mach–Zehnder modulators
(DPMZMs) [18]. Compared to the cascade and parallel MZMs, the microwave photonic
converter with a single MZM, which has received extensive attention recently, enjoys high
conversion efficiency and excellent stability [19].

In [20], the MZMs are both biased at quadrature point, and undesirable spectral
components are generated by beating between RF/LO sidebands and an optical carrier.
As a result, the carrier-suppressed single-sideband (CS-SSB) modulation technology is
applied in [21] so as to effectively amplify the sideband signals with an erbium-doped fiber
amplifier (EDFA). Although CS-SSB modulation offers a purer IF signal by beat frequency
between RF and LO sidebands, only the single sideband is used in the frequency conversion,
resulting in a waste of spectrum resources. As for carrier-suppressed double-sideband
(CS-DSB) modulation [22], both the upper and lower sidebands are utilized, therefore the
spectrum utilization is improved. The motivation for most of the existing work [23,24] is to
achieve conversion using RF and LO signals in the system frequency band, typically the
L-Ku band for the transceiver. However, this frequency conversion method will always
bring about a lot of in-band spurs, mainly from the beating between RF/LO sidebands and
the optical carrier. Thus, there is an urgent demand to decrease the in-band interference
signals after frequency conversion.

In this paper, the broadband characteristic of a microwave photonic converter and
fine processing of a microwave converter are combined to propose a microwave photonic
converter based on microwave pre-upconversion. The transmitted and received signals
are upconverted to high frequency (HF) by microwave pre-treatment before entering the
MZM. The interference components consisting of harmonics and intermodulation as well
as original signals are all out of the system frequency band (0.8–18 GHz), and these spurs
can be suppressed by taking advantage of the bandwidth limitation of the detector. Hence,
the spurious suppression of both the in-band and out-band is achieved, which further
realizes high-quality conversion and filtering for the upconversion and downconversion.
Additionally, only a single MZM is employed in the converter system for the purpose
of simplicity and low cost. The HF and LO signals are coupled to drive the MZM by
means of the electrical combiner. CS-DSB modulation is introduced to the MZM by simply
controlling bias voltages of the modulator, which leads to effective spectrum utilization.

2. Principle

The schematic diagram of the transceiver using the proposed microwave photonic
converter is shown in Figure 1. The transmitter, as well as the receiver, consists of a
microwave upconverter (MUC), an electrical combiner (EC), a laser diode (LD), an MZM,
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an EDFA, a photodetector (PD), an electrical filter (EF), and a power amplifier (PA). The
MUC upconverts the IF signal created by a digital to analog converter (DAC) to the HF
signal. Next, the HF and LO signals are combined by the EC and drive the MZM to generate
a modulated signal. Then, the detection of the optical signal amplified by the EDFA is
implemented by the PD. Finally, the RF signal is launched by subsequent filtering and
amplification. Conversely, the receiver converts the RF signal to the IF signal.
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Figure 1. Schematic diagram of the transceiver using proposed microwave photonic converter (the
meanings of the abbreviations in the figure are shown in Table 1).

The raised microwave photonic converter based on CS-DSB modulation is verified
with the following steps. For upconversion, the HF ( f1) signal is finished by microwave
upconversion of the IF (1.8 GHz) signal using a 22 GHz signal. Simultaneously, the LO
( f2) signal is determined by the RF signal. Thus, the transmitting RF point is generated by
the beating between f1 and f2. The downconversion is accomplished through the same
method. The output IF of 1.8 GHz is fixed, which is also generated by the mixing between
f1 and f2. In principle, the demonstrated transceiver system presents a better ability
to transmit and receive RF signals from 0.8–18 GHz in comparison with the traditional
electrical transceiver system.

To achieve the CS-DSB modulation, the MZM has to be biased at the minimum
transmission bias (MITB) point. Taking into account the conversion condition mentioned,
when we combine the HF signal and LO signal to implement the modulation of a single
MZM, the optical field of the MZM can be described by

Eout(t) = 4E0e[i
(φ1+φ2)

2 +iπ+iω0t]·[J0(βLO)J1(βHF)cos(ΩHFt) + J0(βHF)J1(βLO)cos(ΩLOt)] (1)

where E0 is the amplitude of the optical field at the MZM input, ω0 is the angular frequency,
φ1 = πVDC1/Vπ and φ2 = πVDC2/Vπ are the optical phase difference introduced by VDC1
and VDC2 which supply the bias voltages for the upper and lower arms of the MZM, Vπ

represents the half-wave voltage of the MZM, βHF and βLO represent the modulation depth
of the MZM driven by HF and LO signals, respectively and, moreover, ΩHF and ΩLO are
the angular frequency of HF and LO signals, respectively.

Here, we ignore the higher-order sidebands (≥2) under the small-signal modulation
condition. Thus, the CS-DSB modulation of both the HF and LO signals is achieved by
mathematical derivation and analyzed in Figure 2a,c. The sideband diagrams show that
the optical carrier is suppressed to a low level while double sideband signals have the
power of a high level. Next, the frequency conversion is realized via optical-to-electrical
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conversion and beating making use of a PD, and the photocurrent of the IF signal detected
by the PD is given by

iIF(t) = <Eout(t)E∗out(t) = 16<E0
2 J0(βLO)J1(βRF)·J0(βRF)J1(βLO)cos[(ΩRF −ΩLO)t] (2)

where < is the responsivity of the PD. Figure 2b,d prove the final conversion effect for both
the upconversion and downconversion after beating. It is shown that our system could
complete high-quality frequency conversion without any spurs because the mixing spurs
with the frequency of f1 (≥20.2 GHz for upconversion, ≥22.8 GHz for downconversion), f2
(≥21 GHz), f1 + f2, 2 f1, 2 f2, 2 f2 − f1, and 2 f1 − f2 are outside the system frequency range
of 0.8–18 GHz.
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Figure 2. Schematic diagram of the optical spectrum under CS-DSB modulation, (a) for upconversion,
(c) for downconversion, and the electrical spectrum after beating, (b) for upconversion, (d) for
downconversion.

Table 1. The meaning of the abbreviations in Figure 1.

Abbreviations Meaning

LD Laser diode
MZM Mach–Zehnder modulator
EDFA Erbium-doped fiber amplifier

PD Photodetector
EF Electrical filter
PA Power amplifier

LNA Low-noise amplifier
MUC Microwave upconverter

EC Electrical combiner
DAC Digital to analog converter
ADC Analog to digital converter

FS Frequency synthesizer

3. Simulation Results

A simulation in accordance with Figure 1 is performed through OptiSystem. The
linewidth and frequency of the laser are 50 MHz and 193.1 THz, respectively, the output
power is 10 dBm. An MZM is adopted in the settings whose upper and lower ports have
opposite electrical phases, and the MZM has an extinction ratio of 40 dB. In addition, the
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switching bias voltage and the bias voltage of the upper arm are set to 6 V in order to carry
out CS-DSB modulation. The PD has a responsivity of 0.8 A/W.

The results of upconversion and downconversion are shown in Figures 3 and 4. We
assume that the IF signal has a frequency of 1.8 GHz and adjust the frequency of RF to
0.8–18 GHz in the simulation system, which corresponds to LO over 21–38.2 GHz. As
can be seen from Figure 3, the modulation optical spectrum of HF signal and LO signal
indicates that the CS-DSB modulation is finished by controlling parameters of the dual-port
MZM. Between them, the HF signal originates from upconverting the IF/RF signal via a
22 GHz signal. Furthermore, the +1-order sidebands of HF and LO signals exhibit good
power consistency and give greater optical power than −20 dBm for both the upconver-
sion and downconversion (Figure 3). The beating frequency from 0–20 GHz is shown in
Figure 4a,b. The electrical spectrum illustrates that RF and IF signals produced by upcon-
version and downconversion, respectively, can obtain an in-band spurious suppression
of at least 25 dBc. Near the target signals, no obvious spurs can be observed because the
mixing spurs are outside the system frequency range of 0.8–18 GHz. For the flatness of
output power, Figure 4c,d show power fluctuation of 2.2 dB for upconversion and 1.88 dB
for downconversion within the LO frequency of 21–38.2 GHz. Therefore, from a simula-
tion point of view, the proposed transceiver system demonstrates improved conversion
capability by applying the microwave photonic converter.
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4. Experimental Results
4.1. Experimental Setup

The experiment based on the setup of Figure 1 is shown in Figure 5. Center wavelength
and output optical power of LD are set at 1550.12 nm and 10 dBm, respectively, to satisfy
requirements of the link. The laser source is connected to the commercial modulator (ixblue,
MXAN-LN-20) so that the optical carrier can be coupled to the MZM. The HF and LO
signals are combined by an electrical combiner and drive the arms of the MZM which has a
half-wave voltage of 5 V and optical insertion loss of 3.5 dB. An EDFA is connected after the
modulated optical path for optical power compensation. The working current of the EDFA
is set to 100 mA under an amplification ability of 25 dB. Next, the photoelectric conversion
is completed by a PD, and the responsivity is 0.8 A/W, and the bandwidth is 20 GHz to
achieve spurious suppression of out-band. In the beat-frequency process, the frequency
of HF and LO signals is determined by IF and RF signals. We should note that the IF/RF
signal in this experiment is assumed to have been upconverted to HF signal via a 22 GHz
signal in advance, because the commercial active microwave upconverters have a spurious
suppression ratio of over 60 dBc and a conversion gain of over 3 dB [25,26], and this is good
enough to meet our experimental needs.
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4.2. Optical Spectrum

First of all, the CS-DSB modulation of the proposed microwave photonic converter is
analyzed in the optical domain. The modulated optical spectrum of upconversion with
an HF signal of 20.2 GHz and LO signal of 35.2 GHz is measured by an optical spectrum
analyzer (OSA, YOKOGAWA, AQ6370D). The HF and LO signals are generated by two
analog signal generators (ASG, KEYSIGHT E8267D, and ROHDE&SCHWARZ) and the
power of both the HF and LO signals is 0 dBm. The optical spectrum under both the
MITB and quadrature bias (QB) point is shown in Figure 6. The selected MZM does not
exhibit a very strong suppression ability of the carrier because the MZM has a relatively
small extinction ratio (30 dB). Compared with the double-sideband (DSB) modulation
described with the short-dashed line, the CS-DSB modulation delineated with the solid
line demonstrates a suppression (16.8 dB) of the central optical carrier. It is beneficial to
the amplification of sideband signals by the EDFA. The orange lines in Figure 6 display a
strength improvement of 13.5 dB for the +1-order sideband signal of 20.2 GHz through the
EDFA. The optical spectrum indicates that the MZM can output a good CS-DSB modulation
signal after the EDFA. The optical carrier is suppressed by simply controlling the bias
voltage of the modulator, which is different from the use of optical filter. In [27], optical
filters are used to filter out unexpected optical carriers. However, the approach is limited by
the requirement of the high stopband rejection level filter at the optical carrier wavelength
and a very narrow bandwidth. Thus, the drawbacks will result in effects on the RF and
LO sidebands when filtering. On the other hand, the modulation sidebands of the LO
35.2 GHz signal exhibit power attenuation of around 10 dB compared to the HF 20.2 GHz
signal. This situation is due to two reasons, one is the increased loss of electrical devices
including electrical cable and electrical combiner at the high frequency, the other is that the
modulation capability of the modulator itself is weakened when frequency increases. The
power responses of the electrical devices and MZM will be described and analyzed later.
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4.3. Electrical Spectrum

The purity of the electrical spectrum is evaluated by an electrical spectrum analyzer
(ESA, ROHDE&SCHWARZ) with a resolution bandwidth of 3 kHz. The measured output
spectrum of both the upconversion and downconversion is described in Figure 7a,b where
the transmitted and received RF signals have a frequency of 0.8 GHz, 3 GHz, 6 GHz, 9 GHz,
12 GHz, 15 GHz, and 18 GHz, respectively. It can be seen that the target signals obtained are
very pure and have spurious suppression of more than 40 dBc at the in-band 0.8–18 GHz.
This is thanks to microwave pre-treatment of the upconversion and the spectrum locations
of all the unwanted mixing spurs are over 18 GHz.

The conversion efficiency is defined by the ratio of the output RF/IF signal power to
the input HF signal power, which represents the power response of the proposed microwave
photonic converter. The LO frequency is tuned from 21–38.2 GHz in order to measure
the conversion efficiency shown in Figure 7c. Furthermore, the power of the HF and LO
signals is fixed at 0 dBm, which is in the linear response region of the whole system. We
can see that the conversion efficiency reduces with the increase in the LO frequency for
both the upconversion and downconversion. Additionally, due to higher frequency of the
HF signal in the downconversion process, a disparity emerges between upconversion and
downconversion. To further analyze the influencing factors of conversion efficiency, the
power responses of the electrical cable, electrical combiner, and the MZM are measured and
described in Figure 7d. Combined with the response curves, we find that the transmission
responses of all three drop at high frequencies and introduced microwave loss reaches
3.2 dB, 4.5 dB, and 5.8 dB, respectively, at 40 GHz, which coincides with the downtrend
of the conversion efficiency. The microwave photonic converter with the high conversion
efficiency is applied in practice. To realize this, in addition to the use of the components
with greater bandwidth, a PD with higher gain, or an SOA and an EDFA in series, can also
be considered.
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4.4. Dynamic Range

Dynamic range is another important characterization parameter for transceivers to
perform the anti-interference and anti-distortion capability of the system. The dynamic
range includes linear dynamic range (LDR) and spurious-free dynamic range (SFDR). LDR
is the difference value between 1 dB power compression point (P-1) and noise power, and
SFDR is the ratio of fundamental signal power to noise floor power when the third-order
intermodulation distortion (IMD3) is equal to the noise floor power. We assume that the
RF operating point of the system is 9 GHz. Thus, the input 1 dB power compression point
(IP-1) is shown in Figure 8a,b with the HF 20.2 GHz for upconversion and HF 31 GHz for
downconversion. The results of 13 dBm and 9.5 dBm are acquired by measuring and fitting.
To test the SFDR of the system, a two-tone signal with a spacing of 1 MHz is adopted to
drive the MZM. As shown in Figure 9a,b, SFDR is up to 86.23 dB·HZ2/3 and 80.95 dB·HZ2/3,
respectively, for upconversion and downconversion. Therefore, the IP-1 and SFDR of our
converter are sufficient for most practical transceiver applications.
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4.5. Comparison

A comparison of the conversion ability of several microwave photonic converters was
completed and the results are presented in Table 2. In [28–30], the research was carried out
based only on the downconversion, and practical application as a transceiver is limited.
Apart from this, the bandwidth limiting factors, including optical and electrical devices, are
more than the proposed microwave photonic converter for the entire system. Considering
the purity of the electrical spectrum, we find that [28,30] just show spurious suppression
within a fraction of the bandwidth, but our converter has a suppression ratio of the mixing
spurs >40 dBc in the whole in-band of 0.8–18 GHz.

Table 2. Comparison of the conversion ability of several microwave photonic converters.

Schemes Conversion Type Conversion
Efficiency

Purity of Electrical
Spectrum

Modulation
Mode

Limitation of
Bandwidth

Demonstrated
Bandwidth

[28] Downconversion 8.8 dB
Good (spurious

suppression > 40 dBc
in 90–110 MHz)

CS-SSB
Edge roll-off of

optical filter and
DPMZM

6–40 GHz

[29] Downconversion −3.5 dB Not measured CS-DSB
Edge roll-off of

optical filter and
MZM

Not measured

[30] Downconversion Around
−27 dB

Good (spurious
suppression > 40 dBc

in 400–600 MHz)
DSB

MZM and
PDM-MZM in

series
2–9 GHz

This
paper

Both upconversion
and downconversion

Around
−35 dB

Good (spurious
suppression > 40 dBc
in the whole in-band)

CS-DSB MZM 0.8–18 GHz
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On the other hand, we compared the proposed microwave photonic converter to the
traditional electrical conversion utilizing an MUC + EF setup. Generally, the traditional
electrical converter needs multi-stage conversion when it is used in a transceiver. The one-
stage electrical conversion system cannot cover the whole band of 0.8–18 GHz, which means
an increase in the system complexity. In order to expand the conversion bandwidth and
the number of parallel processing signals, the traditional microwave frequency conversion
system needs to continuously increase the number of antennas. Thus, the costs and size
will increase. However, the microwave photonics frequency conversion system used in
our system does not significantly increase device count as processing demands increase.
Therefore, from this perspective, our system is simpler than the MUC + EF setup [31].

5. Discussion

Since the responsiveness of the PD used in our system is small (0.8 A/W), the con-
version efficiency is relatively low, and we did not take the microwave upconverter and
electrical filter (MUC + EF) into consideration. Thus, the whole conversion loss should be
larger than 35 dB. There are several solutions to further improve the conversion efficiency.
One is to use an active microwave upconverter [32] which could provide additional conver-
sion gain (~3 dB), the other is to use electrical amplification after the PD, but the increased
noise power and appearance of spurious signals will be another problem.

Bandwidth is another factor that must be considered when the proposed scheme is
used in radar systems. In addition to the space field, the bandwidth of the L-Ku band is
sufficient for most radars, for example, warning radar [33], and civil aviation radar [34,35].
On the other hand, in this paper, we sacrifice nearly half of the bandwidth in order to obtain
high in-band spurious rejection (0.8–18 GHz). The main limiting factors of bandwidth
come from MZM and PD, and today’s modulators [36] and detectors [37] can achieve a
bandwidth of over 100 GHz. Therefore, for the application in the space field, we just replace
the MZM and PD in this experiment with the modulator and detector of higher bandwidth.

In practice, the DAC/ADC may be located in an office away from the radar. The
effects of fiber dispersion should be considered when the fiber has sufficient length [38].
When we consider analog signal transmission, fiber dispersion creates a time delay ∆τ
between adjacent signals. That will increase phase difference ∆ϕ = 2π f ∆τ, and then cause
the amplitude of the synthetic wave to drop. The higher the modulation frequency f , the
larger the phase shift and the loss. Therefore, this limits the transmission bandwidth. To
solve the problem introduced by dispersion, dispersion compensation techniques, such
as Bragg grating dispersion compensation [39], chirp compensation [40], and dispersion
compensation fiber (DCF) [41], are necessary in the application.

6. Conclusions

In this paper, we proposed a microwave photonic converter based on microwave
pre-upconversion. The transmitted and received signals before entering the MZM are
upconverted to HF by microwave pre-treatment. The HF and LO signals are coupled to
drive the MZM by means of the electrical combiner, and CS-DSB modulation is introduced
to the MZM by simply controlling the bias voltages of the modulator. Only a single MZM
is employed in the converter system so that the complexity and bandwidth limiting in the
link can be reduced. Experimental results demonstrate that the interference components
including harmonics and intermodulation as well as original signals are all out of the system
frequency band from 0.8–18 GHz, and in-band spurious suppression of at least 40 dBc
is achieved. In addition, the system has SFDR of 86.23 dB·HZ2/3 for upconversion and
80.95 dB·HZ2/3 for downconversion. The proposed system shows improved conversion
capability for both the upconversion and downconversion in the applications of radars and
microwave signal processing.
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