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Abstract: With the progressive replacement of metallic parts by high-performance fiber-reinforced
plastic (FRP) components, typical properties of metals are required to be placed on the material’s
surface. A metallic coating applied to the FRP surface by thermal spraying, for instance, can fulfill
these requirements, including electrical conductivity. In this work, laser pre-treatments are utilized
for increasing the bond strength of metallic coatings. However, due to the high-precision material
removal using pulsed laser radiation, the production-related heterogeneous fiber distribution in FRP
leads to variations in the structuring result and consequently to different qualities of the subsequent
coating. In this study, hyperspectral imaging (HSI) technologies in conjunction with deep learning
were applied to carbon fiber-reinforced plastics (CFRP) structured by nanosecond pulsed laser. HSI-
based prediction models could be developed, which allow for reliable prediction, with an accuracy of
around 80%, of which laser-treated areas will successfully be coated and which will not. By using
this objective and automatic evaluation, it is possible to avoid large amounts of rejects before further
processing the parts and also to optimize the adhesion of coatings. Spatially resolved data enables
local reworking during the laser process, making it feasible for the manufacturing process to achieve
zero waste.

Keywords: laser structuring; hyperspectral imaging; surface pre-treatment; coating quality prediction;
machine learning; automation; metal–plastic hybrid; lightweight

1. Introduction

The usage of fiber-reinforced plastics (FRPs) has significantly increased in the last
years. This is mainly due to their favorable stiffness-to-weight ratio, making them ideal for
being used in lightweight construction, including automotive and aerospace markets [1].
On the other hand, challenges must be overcome for the large-scale replacement of metal
components with FRP components, including typical metal properties on the surfaces, such
as those which enable wear and temperature resistance, electrical conductivity, or thermal
isolation [2–4]. Therefore, to improve certain properties, a metallic coating can be applied
to the FRP surface, for example, by thermal spraying [5–12]. In particular, for the case of
carbon fiber-reinforced plastics (CFRP), different surface pre-treatment methods have been
already investigated, such as sanding, pre-heating, etching, and even the application of
additional layers. The most established surface pre-treatment method for cleaning and
roughening the substrate surface is mechanical blasting [6,9,11,13,14]. Unfortunately, the
highly accelerated and sharp-edged blasting particles (e.g., corundum) can damage the
fibers near the surface [6]. As a result, air pockets are produced in the interface between the
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FRP and the metal coating, and in these regions the long-term stability is lowered compared
to an intact interface.

As an alternative, pulsed laser surface structuring methods offer a promising alterna-
tive for cleaning and roughening the CFRP surface. Smashed filaments can be prevented, no
contamination occurs due to the contact free process, and no additional material is needed.
Furthermore, the structuring process can be applied locally without utilizing masks, e.g.,
by using a laser scanner system [7,15–17]. For a good coating adhesion, a homogeneous
surface quality is required. On the other hand, due to the manufacturing process, FRPs
exhibit a non-uniform distribution of the reinforcing fibers. This results in an uneven
amount of matrix covering the fibers. Therefore, material-specific heterogeneity cannot
be compensated in all cases. Due to these inhomogeneities, it is conceivable that using
identical laser parameters will yield different results concerning the surface topography
depending on the matrix layer thickness above the carbon fibers. For instance, some areas
of the FRP material can show after the laser treatment the exposure of the reinforcing
fibers while in other regions the fibers can be still covered by the epoxy matrix. This is in
particular the case when pre-treating different batches of the FRP material. Therefore, it
might be necessary to adjust the operating laser parameters (especially the laser power)
during the process to ensure consistent adhesion strengths of the coating. Until now, the
laser-treated FRP must be subjected to optical inspection, whether visually or by means
of a microscope. The qualitative evaluation is subject to the objective assessment of the
processor and thus depends on his or her experience [18–21].

To overcome these issues, an in-line process monitoring concept, e.g., using hyperspec-
tral imaging (HSI), could be used to control the quality of the laser structuring results as
well as predicting the coating adhesion of the coating layer. In consequence, areas requiring
additional treatment could be identified even during the structuring process.

HSI method has shown to enable rapid spatial and spectral analysis of surfaces.
In a hyperspectral measurement, a complete spectrum in the wavelength range under
investigation is obtained for each point on the measured sample surface. The result is called
a hypercube. The wavelength range is not limited to the visible part of the spectrum, but can
be extended into the ultraviolet, the near-infrared, and the mid-infrared. It is also possible
to measure Raman and fluorescence signals. Originally developed for remote sensing [22],
HSI has now found uses in many other applications, such as in agriculture, recycling,
medicine, and pharmaceuticals [23–26]. The analysis of hyperspectral data is mostly
done using machine learning [27], and recently increasingly also using deep learning, i.e.,
convolutional neural networks (CNN). Paoletti et al. [28] provided a comprehensive review
of the current state-of-the-art methods for HSI classification, analyzing, and correlation
of imaging data. Machine learning for the evaluation of hyperspectral data is used, for
example, for agricultural and medical applications [29,30]. For the prediction of adhesion
properties of coatings using hyperspectral data and machine learning, there are currently
very few publications [31].

In this article, it is investigated whether it is possible to predict the coating adhesion
of a thermal sprayed Cu layer on laser-processed CFRP components using hyperspectral
imaging and deep learning methods. For this purpose, CFRP samples are pre-treated with
three different surface qualities and characterized using two different HSI systems. The
copper-deposited areas are correlated with the recorded image data and used to train,
optimize, and validate U-Net CNNs [32] to predict the coating adhesion.

2. Materials and Methods
2.1. Materials

CFRP parts (SIGRAPREG® C U-600-0/SD-E501/33%) with a thickness of 2 mm con-
sisting of an epoxy resin were used in this study. The fiber volume content is specified as
67% with unidirectional oriented carbon fibers (from SGL Carbon, Wiesbaden, Germany).
The structured surfaces had a rectangular geometry of 12.5 mm × 25 mm.
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The coating material used was a copper wire (>99.8% Cu) with 1.6 mm diameter (from
GTV Verschleißschutz GmbH, Luckenbach, Germany).

2.2. Process Chain

The first step of the process chain involved surface preparation treatment before
applying the coating. Figure 1 shows schematically the complete process chain. First, the
CFRP was structured using a pulsed laser beam. Afterwards, the HSI camera was used to
scan the pre-treated area to detect the surface quality. Finally, the thermal spray process
was applied for depositing the metal coating on the laser structured CFRP substrates. In
this work, the process was performed discontinuously.
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Figure 1. Process chain from untreated CFRP to laser structured surface and to coated surface
including laser system, quality control by HSI system, and metallization by thermal spraying.

2.2.1. Laser Pre-Treatment Process

For the laser structuring process, a Nd:YAG laser Avia NX40 (from Coherent, Santa
Clara, CA, USA) was used, offering a maximum laser power of 20 W, operating with a
wavelength of 355 nm and a pulse duration of 30 ns.

For this study, a laser-roughening process is used to generate three different quality
conditions in order to evaluate the monitoring method. The different quality conditions
are intended to simulate the influence of different thicknesses of matrix layers above the
carbon fibers and are described as follows:

• Insufficient ablation: carbon fibers still covered with plastic matrix.
• Optimal ablation: mostly exposed carbon fibers without damaged fibers.
• Damaging ablation: carbon fibers exposed of plastic matrix and a high amount of broken

carbon fibers.

To study the influence of the amount of plastic above the fibers on the ablation pattern,
it would be necessary to cover the carbon fibers with different thicknesses (in micrometer
range) of homogeneous epoxy resin layers. This is not possible from a manufacturing point
of view. For this reason, the following approximation must be made:

• The ablation pattern of the quality condition insufficient ablation can be assumed to be
similar to the ablation pattern that would occur when treating a thick matrix layer.

• In contrast, it can be assumed that the ablation pattern of damaging ablation is similar
to the ablation pattern that would occur when treating a thin matrix layer.

Details about the optical setup as well as the used laser parameters are presented
in Table 1.



Photonics 2022, 9, 439 4 of 15

Table 1. Laser parameters used in this work for treating the different parts.

Quality
Condition

Average Power
in W

Scanning Speed
in mm/s

Hatch Distance
in µm

Focal Length in
mm

Spot Size
in µm

Insufficient ablation 1.2
1200 20 160 20Optimal

ablation 4.22

Damaging
ablation 7.23

2.2.2. Thermal Spraying

The copper coating was applied using a wire arc spraying process. A spraying system
consisting of the VisuArc350 inverter and the Schub5 gun (both manufactured by Oerlikon
Metco Europe GmbH, Kelsterbach, Germany) was used. The gun was mounted on a robot
with six adjustable axes. The operating gun was applied three times over the specimens,
using a coating thickness around 100 µm [33]. The used parameters are collected in Table 2.
After both the laser treatment and the coating processes, the surfaces were photographed
for further evaluation. In total, 45 samples were produced.

Table 2. Thermal spraying parameters [33].

Current
in A

Voltage
in V

Spraying Distance
in mm

Traverse
Speed in m/s

Gas Pressure
in MPa

Flow Rate
in m3/h

80 40 150 1 0.6 142.6

2.2.3. Hyperspectral Imaging

The hyperspectral measurements of the 45 samples produced were performed with a
pushbroom HSI measuring system using either diffuse halogen (VNIR HSI) and 532 nm
Nd-YAG laser illumination sources (Laser HSI). A schematic representation of the two
HSI systems is shown in Figure 2. The systems are equipped with a VNIR HSI camera
(Hyperspec-VNIR, Headwall Photonics Inc., Bolton, MA, USA) with a wavelength range
between 400 nm and 1000 nm and a matching lens (Xenoplan 23 mm f/1.4; Jos. Schneider
Optische Werke, Bad Kreuznach, Germany). The HSI camera is equipped with a CMOS
detector with 1000 pixels in the spatial dimension and 1000 pixels in the spectral dimension.
The sensor was 4× binned in the spectral dimension, resulting in 250 pixels covering the
spectral range from 325 nm to 1111 nm.

The lighting for the VNIR HSI is provided by 6 halogen lamps with a power of
25 W each. The diffuse illumination of the samples is done by a self-designed integration
tube made of optical PTFE (Spectralon, Labsphere Inc., North Sutton, NH, USA), which
produces a homogeneous diffuse illumination. The lighting for the Laser HSI is provided
by a 300 mW 532 nm Nd:YAG laser (GLK 32XX TS, LASOS Lasertechnik, Jena, Germany).
The laser was expanded into a line by a rotating mirror (dynAxis S, Scanlab, Puchheim,
Germany) and projected onto the sample by a dichroic mirror (LPD02-532RU, Semrock,
Rochester, NY, USA) with an edge wavelength of 535 nm. In addition, a long-pass filter
with a cut-off wavelength of 532 nm (LP03-532RE, Semrock, USA) was placed in front of
the camera to block the laser light. A detailed description of the Laser HSI measurement
system can be found in Gruber et al. [31]. The movement of the samples was controlled by
a linear stage (VT 80, PI Micos, Eschbach, Germany) in both systems.
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Figure 2. (a) Schematic representation of the VNIR HSI system and (b) schematic representation of
the Laser HSI system. HSI: VNIR HSI camera. L: Lens. DF: Diffuse halogen illumination. F: Long
pass filter. DM: Dichroic mirror. RM: Rotating mirror. MU: Motion unit.

To avoid irregularities in the lighting and to eliminate the influence of dark current,
a white and a dark correction for each wavelength was carried out for the VNIR HSI
measurement according to Equation (1):

Ic(λ) =
Io(λ)− Id(λ)

Iw(λ)− Id(λ)
(1)

where Ic(λ) is the corrected image intensity for wavelength λ, Io(λ) is the original image
intensity for the wavelength λ, Id(λ) is the dark current for the wavelength λ recorded
with the light source switched off and the lens covered, and Iw(λ) is the intensity for the
wavelength λ of the white reference.

For the white reference, a plate of optical PTFE was scanned under the same mea-
suring conditions as the original image. For the Laser HSI measurement, no correction
was necessary.

All measurements in this work were performed at a working distance of 250 mm,
resulting in a field of view (FOV) of around 100 mm and a pixel resolution of approximately
100 µm. The spectral resolution was ~3 nm. The exposure time of the camera was set to
of 20 ms for the VNIR HSI measurement and to 100 ms for the Laser HSI measurement,
resulting in a recording frame rate of 25 Hz and 8 Hz, respectively. The result of each
measurement was a hypercube with 250 spectral bands between 325 nm to 1111 nm.

The acquisition and basic preprocessing of the hyperspectral data was done using the
imanto®pro software package (Fraunhofer IWS, Dresden, Germany). It allows the control
of the system components and their measurement parameters, the data acquisition, as well
as the visualization and pre-processing of the acquired hyperspectral images.

2.2.4. Data Preprocessing and Analysis

The raw hyperspectral data and the images of the samples after applying the copper
coatings were processed using Python version 3.9.10. Firstly, the wavelength range of the
hyperspectral measurements was cut to 400 nm to 1000 nm for the VNIR HSI measurements
(VNIR) and to 540 nm to 900 nm for the Laser HSI measurements (Laser). The resulting
hypercubes have 191 and 142 wavelength ranges, respectively. Outside these wavelength
ranges, either the quantum efficiency of the detector is too low, or no signal is expected.

Subsequently, the hyperspectral measurements as well as the photographs of the
coated samples were matched. Therefore, the corner points of the samples were se-



Photonics 2022, 9, 439 6 of 15

lected manually for all measurements. The data was then converted to a uniform size of
256 × 128 pixels by projective transformation. For the hyperspectral measurements, this
transformation was performed individually for each spectral channel. The images and data
sets obtained are subsequently divided into smaller, non-overlapping regions with a size
of 64 × 64 pixels. The binary target images for prediction are created from the photos of
the samples by binarizing the red color channel with a threshold of 128. Coated areas are
labeled 1 and uncoated areas are labeled 0. For training the CNNs, the target images are
one-hot encoded.

Next, a principal component analysis was performed on the VNIR and laser data. For
the training of the CNNs, the first five principal components were used in each case. In
total, 360 hypercubes were obtained for VNIR and the laser measurements, respectively.
Of these 360 hypercubes, 295 showed complete copper coating (<1% pixels detected as
uncoated) and 65 showed incomplete coating. In total, around 10% of the image pixels
were detected as uncoated.

2.2.5. Data Evaluation

The aim of the present work is to predict for each area of the laser-processed samples
whether the thermal copper coating is successful or not. Thus, each pixel of the images is
assigned a value of 0 (no coating applied) or 1 (successful coating). This is a sematic segmen-
tation problem in which great successes have been achieved with fully convolutional neural
networks (FCN) such as U-Net [32]. U-Net is an encoder-decoder structure, which means
that the encoder extracts features from the input data by convolution and continuously
reduces the size of the input data through pooling. Through multi-scale feature fusion
and up-sampling, the decoder then generates a segmented image with the same size as
the input. In this work, a modified U-Net is used, which implements residual connections
according to Cholet et al. [34] in addition to the classical U-Net structure. In the following
paragraphs, the structure, training, and optimization of the used U-Net are described.

An image with size n × 64 × 64 is input into the neural network. The number
of channels n was 5 for the data sets, since the first five score values of the PCA of the
hypercubes are used. The final output image of the neural network has a size of 2 × 64 × 64.
Each pixel position corresponds to a two-dimensional vector indicating if the copper coating
will be successful or not.

The encoder arm of the network corresponds to a conventional CNN: unpadded
convolutions (Conv2D) are applied repeatedly, each followed by a rectified linear unit
(ReLU), a batch normalization layer (BatchNorm), and a 2 × 2 max pooling with a stride of
2 for down-sampling. In the decoder arm, an up-sampling of the feature maps is followed
by a convolution, followed by ReLU and BatchNorm layers. In addition, it is possible to
combine the features from the encoder arm with the up-sampled features from the decoder
arm (concatenate) [32]. Furthermore, there are so called residual connections where a
1 × 1 convolution with stride of 2 is used. The feature maps from the residual layer are
then merged with the feature maps from the normal convolution (resid) [34]. The final
layer maps the feature maps to the two target classes.

The best architecture for each data set is determined by an automatic hyperparameter
optimization using the Hyperband Tuner of the Keras library [35] in a separate optimization
experiment using a validation data set. The optimized hyperparameters here are the
number of filters for the convolutional layers (f ), the number of down/up-sampling steps
(m), the kernel size of the convolutional layers, whether there is a concatenate connection
between the encoder and the decoder arm of the U-Net (concatenate), and whether a
residual layer is used (resid).

The training of the U-Nets is done with the Python library Keras [36] on a workstation
with an Intel i7 8700k CPU, 32 GB RAM and an Nvidia Geforce GTX1080 GPU. The
hyperspectral measurements were pre-processed as described in chapter 2.2.4, and 30 of the
360 training samples were randomly selected as validation and test set, respectively. The
training was repeated five times with a different split of training, validation, and test set.
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For the training of the CNNs the RMSprop algorithm [37,38] was used and categorical
cross entropy was chosen as the loss. The learning rate was set to 0.001 and reduced by a
factor of 0.2 if no reduction in the loss on the validation data was achieved after 25 epochs.
In total, the training was performed for 250 epochs.

The models obtained were evaluated using the test set with the indicators balanced
accuracy, mean intersection over union (IoU), precision (P), recall (R), and the F1 score.
Precision P and recall R can be defined as follows:

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

where TP, FP, and FN are the true positive, false positive, and false negative pixels, respec-
tively. F1 is defined basing on the harmonic mean of precision and recall:

F1 =
2·P·R
P + R

(4)

Later, the balanced accuracy is defined as:

balanced accuracy =
1
2

(
TP

TP + FN
+

TN
FP + TN

)
(5)

The successfully coated pixels are considered as positive instances. Finally, the mean
IoU describes the overlap between the areas predicted to be successfully copper-coated and
the areas actually successfully copper-coated and is calculated as:

mean IoU =
TP

TP + FP + FN
(6)

2.2.6. Optical Characterization Method

The surface of the laser-treated surfaces were investigated with the light microscope
VHX-5000 (from Keyence, Osaka, Japan).

3. Results and Discussion
3.1. Laser Structuring Treatment

The uneven distribution of the reinforcing fibers due to production is shown in the
cross section in Figure 3a. In addition, Figure 3b shows a representative ablation result after
the pulsed laser process. From these images, it can be seen that while surface near fibers
became exposed from matrix material (optimal ablation in the central region in Figure 3b),
the epoxy resin is still covering the deeper carbon fibers (insufficient ablation on the right
in Figure 3b). In those areas where the carbon fibers are covered by a larger amount of
plastic than in other areas, insufficient ablation occurs locally, highlighted in Figure 3b. In
consequence, local reworking within this component may be necessary to prevent local
defects in the metal coating.

As mentioned in Section 2.2.1, different surface qualities have been produced in this
work for evaluating adhesion of thermally sprayed copper coatings deposited on laser
textured surfaces. These were produced using the process parameters described in Table 1.

As it can be seen in Figure 4, in case of insufficient ablation (Figure 4a) the topography is
characterized by a high amount of matrix. The carbon fibers are still covered by remaining
epoxy because the polymer matrix was only partly ablated. An optimal ablation (Figure 4b)
is given, by a heterogeneous surface structure. A small amount of matrix residues (reflec-
tive, white areas in Figure 4b) remained locally limited due to variations of the amount
of polymer matrix above the filaments. The carbon fibers are not affected by the laser
treatment. Finally, Figure 4c shows the damaging ablation condition, characterized by a
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homogeneous structure without matrix residues. The surface shows a high amount of
damaged carbon fibers, visible in Figure 4c by shadowing effects along the filaments. Both,
the polymer matrix and the carbon fibers were ablated during the laser process. The low
surface roughness in the areas of matrix residues will lead to gaps during the coating
deposition [33].
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Figure 4. Optical microscope images of three surface qualities after laser pre-treatment with
(a) insufficient, (b) optimal, and (c) damaging material removal.

With a thicker matrix layer on top of the carbon fibers (corresponding to insufficient
ablation), the ablation of epoxy is inhibited because the removal is significantly influenced
by the interaction of the laser radiation with the carbon fiber. A thick layer of plastic matrix
reduces this interaction [20]. In contrast, a thinner matrix layer (corresponding to damaging
ablation) leads to the ablation of both matrix and carbon fibers.

3.2. Coating Deposition

In Figure 5 the coating adhesions for the three surface conditions are exemplarily
presented. As expected, the composite material surfaces with insufficient ablation led to a
very heterogeneous coating adhesion (in Figure 5a,d). Areas of the specimen that appear
darker in Figure 5a because the carbon fibers are locally closer to the surface, are partially
covered with copper in Figure 5d. Due to the high amount of plastic residue or the low
amount of exposed fibers, the substrate surface of insufficient ablation offers too few adhesion
points for the metal particles.

On the surfaces with optimal and damaging ablation qualities, a homogeneous copper
coating was obtained (in Figure 5e,f). The irregular presence of remaining matrix mate-
rial (in Figure 5b) did not disable a completely coated surface due to a high amount of
anchor points with the exposed carbon fibers around. Despite the broken carbon fibers
on the surface of damaging ablation (in Figure 5c) the coating adhesion shows a completely
closed copper layer similar to the specimens treated with optimal ablation. Consequently,
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beside the surface condition with insufficient ablation, most specimens could be covered by
copper completely.
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Figure 5. Optical photographs before (a–c) and after (d–f) the coating deposition treatment for CFRP
surfaces with (a,d) insufficient, (b,e) optimal, and (c,f) damaging ablation conditions.

Transferred to the approximation in Section 2.2.1, this means that a thick matrix layer
on top of the fibers (corresponding to insufficient ablation) is more critical for the coating
adhesion than a comparatively thin matrix layer (corresponding to damaging ablation).

3.3. HSI Measurements of Laser Processed Surfaces

Figure 6 shows an example of the obtained hyperspectral measurement results of a
laser processed CFRP sample. For the VNIR HSI measurement, the reflected intensity at a
wavelength of 730 nm is color-coded, and for the Laser HSI measurement, the fluorescence
intensity at a wavelength of 620 nm is color-coded. In addition, different spectra obtained
at local positions are shown, which are indicated by colored crosses in the figure.

Photonics 2022, 9, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 6. Examples of hyperspectral measurements for a laser processed CFRP sample. (a) Reflec-
tivity (VNIR HSI) and (b) fluorescence (Laser HSI) at the indicated wavelength. Example spectra 
(c,d) of the hyperspectral measurement, the position of which is marked by colored crosses in the 
upper figures. 

A visual comparison of the hyperspectral measurements of the CFRP specimens pro-
cessed with the three different surface qualities is shown in Figure 7. The images show the 
color-coded reflectivities at 730 nm for the VNIR HSI measurement (Figure 7a,d,g) and 
the fluorescence intensity at 620 nm for the Laser HSI measurements (Figure 7b,e,h). In 
addition, the result of the copper coating are also shown (optical micrograph (Figure 
7c,f,i)). The selected samples are characteristic for the whole set of samples. 

It can be seen that for the insufficient ablation case, only local areas of the surface were 
successfully coated (Figure 7a–c). For optimal and damaging ablation conditions, a good 
coating adhesion and uniformity of the copper coating was reached (Figure 7d–i). The 
hyperspectral measurements also show differences, but there is no easy recognizable link 
between the recorded images of the HSI measurements and the results of the copper coat-
ings. 

For the insufficient ablation case, a very homogeneous reflectivity for VNIR HSI and 
fluorescence for the Laser HSI were measured (Figure 7a–c). This can be explained by the 
fact that the laser structuring does not yet expose the carbon fibers and the surface is only 
roughened. 

The surfaces with optimal ablation characteristics show areas with strong and weak 
reflectivity for the VNIR HSI and fluorescence intensity for the Laser HSI measurement, 
respectively (Figure 7d–f). Here, the carbon fibers near the surface are exposed to the laser 
radiation and can be detected very well by the HSI measurement. On the surfaces charac-
terized by damaging ablation, more areas with strong reflectivity or fluorescence intensity 
can be detected (Figure 7g–i). This can be attributed to a deeper exposition and the par-
tially damaged carbon fibers. 

Figure 6. Examples of hyperspectral measurements for a laser processed CFRP sample. (a) Reflectivity
(VNIR HSI) and (b) fluorescence (Laser HSI) at the indicated wavelength. Example spectra (c,d) of the
hyperspectral measurement, the position of which is marked by colored crosses in the upper figures.



Photonics 2022, 9, 439 10 of 15

It can be seen that color-coded intensity is very similar for both measurements. Areas
with high reflectivity in the VNIR measurement also show high fluorescence in the Laser
HSI measurement. Based on a visual assessment of the samples and the reference mea-
surement of non-laser processed CFRP samples, it can be assumed that the bright areas
correspond to exposed or surface near carbon fibers. The matrix material, on the other
hand, shows only a very weak reflection and almost no fluorescence.

In the VNIR measurement, the spectra of the exposed fiber and matrix material differ
mainly in the intensity of the reflection (Figure 6a,c). The spectra of the exposed carbon
fibers in the Laser HSI measurement show a strong fluorescence between 550 nm and
650 nm (see Figure 6d).

A visual comparison of the hyperspectral measurements of the CFRP specimens
processed with the three different surface qualities is shown in Figure 7. The images show
the color-coded reflectivities at 730 nm for the VNIR HSI measurement (Figure 7a,d,g) and
the fluorescence intensity at 620 nm for the Laser HSI measurements (Figure 7b,e,h). In
addition, the result of the copper coating are also shown (optical micrograph (Figure 7c,f,i)).
The selected samples are characteristic for the whole set of samples.
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Figure 7. Comparison of hyperspectral measurements and copper coating adhesions (optical micro-
graphs), for example, samples for each of the three sets of laser conditions used: (a–c) insufficient
material removal, (d–f) optimal material removal, and (g–i) damaging material removal.

It can be seen that for the insufficient ablation case, only local areas of the surface
were successfully coated (Figure 7a–c). For optimal and damaging ablation conditions, a
good coating adhesion and uniformity of the copper coating was reached (Figure 7d–i).
The hyperspectral measurements also show differences, but there is no easy recogniz-
able link between the recorded images of the HSI measurements and the results of the
copper coatings.

For the insufficient ablation case, a very homogeneous reflectivity for VNIR HSI and
fluorescence for the Laser HSI were measured (Figure 7a–c). This can be explained by
the fact that the laser structuring does not yet expose the carbon fibers and the surface is
only roughened.

The surfaces with optimal ablation characteristics show areas with strong and weak
reflectivity for the VNIR HSI and fluorescence intensity for the Laser HSI measurement,
respectively (Figure 7d–f). Here, the carbon fibers near the surface are exposed to the
laser radiation and can be detected very well by the HSI measurement. On the surfaces
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characterized by damaging ablation, more areas with strong reflectivity or fluorescence
intensity can be detected (Figure 7g–i). This can be attributed to a deeper exposition and
the partially damaged carbon fibers.

It was also investigated whether there are differences between the spectra of the well
coated and the poorly coated sample areas on average. Figure 8 shows the mean spectra of
the VNIR HSI and the Laser HSI measurements for the coated and the non-coated samples.
For the VNIR measurements (Figure 8a), it can be seen that the uncoated areas show a
higher average reflectivity than the copper coated samples. In contrast, the coated areas
show a greater variance in the recorded intensity. These results are in good agreement
with the findings in Figure 7: The samples with poor copper coating adhesion have been
insufficiently processed by the laser (insufficient ablation, Figure 7a–c) and show a relatively
high and constant reflectivity. In contrast, the samples with good coating coverage (optimal
and damaging ablation, Figure 7d–i) show many areas of weak reflectivity, but at the same
time are very inhomogeneous due to the high reflectivity of the exposed carbon fibers.
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Figure 8. Averaged spectra of the (a) VNIR HSI and (b) the Laser HSI measurement for the sample
areas showing a good and a bad copper coating, respectively.

These effects are not visible by the laser HSI spectra (Figure 8b). In this case, the
recorded spectra show a very similar shape and intensity distributions for both materials.
However, the variance is higher for the samples with good copper coating adhesion. It is
likely that the fluorescence intensity is averaged out in the well-coated areas of the sample.

3.4. Data Analysis and Training

Training and hyperparameter optimization of the models were performed for the data
from the VNIR and the Laser HSI measurements. The best hyperparameters found for each
model are presented in Table A1 and the Appendix A. Using these parameters, complete
model training was performed five times on the training data for each data set, followed by
validation on the test data. The mean values and the standard deviation of the obtained
quality metrics are shown in Table 3.

Table 3. Mean results and standard deviation of the metrics for predicting coating adhesion for both
HSI datasets. The best value in each case is underlined. The metrics are calculated on the test data set.

Data Precision (P) Recall (R) F1 Score Balanced
Accuracy

Mean Intersection
over Union (IoU)

VNIR 0.954 ± 0.008 0.961 ± 0.014 0.957 ± 0.012 0.795 ± 0.031 0.880 ± 0.007
Laser 0.952 ± 0.009 0.944 ± 0.011 0.948 ± 0.009 0.784 ± 0.039 0.860 ± 0.006
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The results show that the differences between the two HSI measurements are relatively
small. Thus, both systems seem to provide relevant information for predicting the result of
the copper coating. The best results are obtained for the VNIR measurement with a mean
IoU of 0.88, a recall R of 0.961, an F1 score of 0.957, and a balanced accuracy of 0.795. The
results for the laser measurement are slightly worse with a mean IoU of 0.86, a recall R of
0.944, an F1 score of 0.948, and a balanced accuracy of 0.784. Based on the calculated metrics,
it appears that the best prediction results can be achieved with the VNIR measurements.

Figure 9 shows representative results of the prediction of the copper coating adhesion
compared to the ground truth. Only samples for the insufficient ablation are presented,
because for the optimal and damaging ablation conditions for both HSI measurements, the
complete coating of the samples was predicted with ~100% accuracy. As it can be seen,
the performed predictions are in agreement with the experimental results in all cases. For
the incompletely coated samples that were pre-processed with insufficient ablation, the
prediction of the coating adhesions for both HSI measurements is close to the ground truth,
but there are deviations especially for the fine structures of the coating.

Photonics 2022, 9, x FOR PEER REVIEW 13 of 16 
 

 

HSI methods it is possible to find areas with incomplete copper coating. The fine scaled 
prediction of the copper coating seems to be more challenging and is only partially suc-
cessful for both HSI methods. 

 
Figure 9. Ground truth and predicted copper coating for three samples from the test dataset for the 
two HSI methods. White pixel are copper coated and black pixels are not copper coated. The images 
only show samples with insufficient material removal. For the optimal and the damaging ablation, the 
complete copper coating was predicted correctly for both HSI methods. 

4. Conclusions 
In this work, it was found that it is possible to predict successfully coated areas of a 

thermal sprayed copper layer on a laser pre-processed CFRP surface by (hyperspectral) 
imaging and machine learning. The results are summarized as follows: 
• An objective and automatic evaluation of the surface quality of CFRP samples after 

laser pretreatment was developed. 
• Prediction of whether a complete coating or a defective and incomplete coating will 

occur on the specimens is possible with high confidence 
• Prediction of successfully coated areas of a thermal sprayed copper layer are possible 

with an accuracy of ~80% using developed deep learning models. 
• The exact spatially resolved prediction of the coating adhesion is much less accurate 

and only partially successful. 
Based on these results, no prior knowledge of the processor is required anymore. The 

method developed can be used to prevent defective parts from being further processed, 
which would result in high reject rates. In addition, it is conceivable to use the spatially 
resolved data as a basis for local reworking to optimize the adhesive strengths and further 
minimize the reject rate or even reduce it to zero.  

At the same time as the massive increase in resource efficiency due to the avoidance 
of rejects, the time and consequently the cost savings increase. Thus, the combination of 
laser technology, hyperspectral imaging, in conjunction with machine learning enables an 
environmentally friendly and sustainable manufacturing process. Beyond the application 
of thermal coating of laser-processed CFRP samples, the present study shows that hyper-
spectral imaging in combination with machine learning methods makes relevant and oth-
erwise difficult-to-access surface properties obtainable, which has also been shown in 
other studies (see [31]). This approach opens up completely new approaches for industrial 
quality control. 

Figure 9. Ground truth and predicted copper coating for three samples from the test dataset for the
two HSI methods. White pixel are copper coated and black pixels are not copper coated. The images
only show samples with insufficient material removal. For the optimal and the damaging ablation, the
complete copper coating was predicted correctly for both HSI methods.

Considering these results, it can be concluded that the best prediction of the success of
copper coating is possible using the VNIR hyperspectral data. In addition, with both HSI
methods it is possible to find areas with incomplete copper coating. The fine scaled predic-
tion of the copper coating seems to be more challenging and is only partially successful for
both HSI methods.

4. Conclusions

In this work, it was found that it is possible to predict successfully coated areas of a
thermal sprayed copper layer on a laser pre-processed CFRP surface by (hyperspectral)
imaging and machine learning. The results are summarized as follows:

• An objective and automatic evaluation of the surface quality of CFRP samples after
laser pretreatment was developed.
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• Prediction of whether a complete coating or a defective and incomplete coating will
occur on the specimens is possible with high confidence.

• Prediction of successfully coated areas of a thermal sprayed copper layer are possible
with an accuracy of ~80% using developed deep learning models.

• The exact spatially resolved prediction of the coating adhesion is much less accurate
and only partially successful.

Based on these results, no prior knowledge of the processor is required anymore. The
method developed can be used to prevent defective parts from being further processed,
which would result in high reject rates. In addition, it is conceivable to use the spatially
resolved data as a basis for local reworking to optimize the adhesive strengths and further
minimize the reject rate or even reduce it to zero.

At the same time as the massive increase in resource efficiency due to the avoidance
of rejects, the time and consequently the cost savings increase. Thus, the combination of
laser technology, hyperspectral imaging, in conjunction with machine learning enables
an environmentally friendly and sustainable manufacturing process. Beyond the appli-
cation of thermal coating of laser-processed CFRP samples, the present study shows that
hyperspectral imaging in combination with machine learning methods makes relevant and
otherwise difficult-to-access surface properties obtainable, which has also been shown in
other studies (see [31]). This approach opens up completely new approaches for industrial
quality control.

Before the developed method can be used in industrial production, further tests
beyond the scope of this feasibility study must be carried out. First, the number and
variation of samples must be further increased to demonstrate the universality of the
approach and to increase the robustness of the models. For example, more CFRP materials
and a wider range of laser processing parameters should be investigated. In addition, the
transferability of the approach from the laboratory to an industrial environment should be
realized. Furthermore, it would be beneficial to investigate the causal relationship between
the reflectivity or the fluorescence of the samples and the result of the copper coating. For
this purpose, it would be useful to characterize the CFRP samples before and after coating
using further analytical methods.
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Appendix A

Table A1. Best found hyperparameters (see Section 2.2.5) for the U-Nets trained on the four data sets
VNIR HSI (VNIR) and Laser HSI (Laser).

Hyperparameter VNIR Laser

Filters f 16 8
Kernel size 5 2

Down sampling steps 2 4
Concatenate True False

Residuen True True
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18. Akman, E.; Erdoğan, Y.; Bora, M.Ö.; Çoban, O.; Oztoprak, B.G.; Demir, A. Investigation of the differences between photochemical
and photothermal laser ablation on the shear strength of CFRP/CFRP adhesive joints. Int. J. Adhes. Adhes. 2020, 98, 102548.
[CrossRef]

19. Köckritz, T.; Schiefer, T.; Jansen, I.; Beyer, E. Improving the bond strength at hybrid-yarn textile thermoplastic composites for
high-technology applications by laser radiation. Int. J. Adhes. Adhes. 2013, 46, 85–94. [CrossRef]

http://doi.org/10.1016/j.wear.2009.08.038
http://doi.org/10.3390/app9112390
http://doi.org/10.3390/fib6040092
http://doi.org/10.1007/s11666-016-0415-7
http://doi.org/10.1016/j.surfcoat.2005.01.042
http://doi.org/10.1016/j.surfcoat.2017.10.066
http://doi.org/10.1016/j.surfcoat.2009.03.011
http://doi.org/10.1007/s11666-013-0003-z
http://doi.org/10.1016/j.phpro.2014.08.032
http://doi.org/10.4028/www.scientific.net/KEM.742.366
http://doi.org/10.2351/1.5036803
http://doi.org/10.1016/j.ijadhadh.2020.102548
http://doi.org/10.1016/j.ijadhadh.2013.06.004


Photonics 2022, 9, 439 15 of 15

20. Gebauer, J.; Burkhardt, M.; Franke, V.; Lasagni, A.F. On the Ablation Behavior of Carbon Fiber-Reinforced Plastics during Laser
Surface Treatment Using Pulsed Lasers. Materials 2020, 13, 5682. [CrossRef] [PubMed]

21. Fischer, F.; Kreling, S.; Dilger, K. Surface Structuring of CFRP by using Modern Excimer Laser Sources. Phys. Procedia 2012, 39,
154–160. [CrossRef]

22. Borengasser, M.; Hungate, W.S.; Watkins, R. Hyperspectral Remote Sensing; CRC Press: Boca Raton, FL, USA, 2007; ISBN
9781420012606.

23. Dale, L.M.; Thewis, A.; Boudry, C.; Rotar, I.; Dardenne, P.; Baeten, V.; Pierna, J.A.F. Hyperspectral Imaging Applications in
Agriculture and Agro-Food Product Quality and Safety Control: A Review. Appl. Spectrosc. Rev. 2013, 48, 142–159. [CrossRef]

24. Calin, M.A.; Parasca, S.V.; Savastru, D.; Manea, D. Hyperspectral Imaging in the Medical Field: Present and Future. Appl.
Spectrosc. Rev. 2014, 49, 435–447. [CrossRef]

25. Gendrin, C.; Roggo, Y.; Collet, C. Pharmaceutical applications of vibrational chemical imaging and chemometrics: A review. J.
Pharm. Biomed. Anal. 2008, 48, 533–553. [CrossRef]

26. Gruber, F.; Grählert, W.; Wollmann, P.; Kaskel, S. Classification of Black Plastics Waste Using Fluorescence Imaging and Machine
Learning. Recycling 2019, 4, 40. [CrossRef]

27. Gewali, U.B.; Monteiro, S.T.; Saber, E. Machine Learning Based Hyperspectral Image Analysis: A Survey. 2018. Available online:
http://arxiv.org/pdf/1802.08701v2 (accessed on 14 April 2022).

28. Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm.
Remote Sens. 2019, 158, 279–317. [CrossRef]

29. Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 10901. [CrossRef] [PubMed]
30. Lu, B.; Dao, P.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture.

Remote Sens. 2020, 12, 2659. [CrossRef]
31. Vater, J.M.; Gruber, F.; Grählert, W.; Schneider, S.; Knoll, A.C. Prediction of Coating Adhesion on Laser-Cleaned Metal Surfaces of

Battery Cells Using Hyperspectral Imaging and Machine Learning. Coatings 2021, 11, 1388. [CrossRef]
32. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image

Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer
International Publishing: Cham, Switzerland, 2015; pp. 234–241, ISBN 978-3-319-24573-7.

33. Gustke, K.; Gebauer, J.; Drehmann, R.; Lasagni, A.F.; Lampke, T. Enhancement of the Adhesion of Wire Arc Sprayed Coatings on
Carbon Fiber-Reinforced Plastic by Surface Laser Structuring. Coatings 2021, 11, 467. [CrossRef]

34. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

35. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A Novel Bandit-Based Approach to Hyperparame-
ter Optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816.

36. François Chollet. Keras. 2015. Available online: https://keras.io/getting_started/faq/#how-should-i-cite-keras (accessed on 14
April 2022).

37. Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA:
Neural Netw. Mach. Learn. 2012, 4, 26–31.

38. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. 2014. Available online: http://arxiv.org/pdf/1412.6980v9
(accessed on 14 April 2022).

http://doi.org/10.3390/ma13245682
http://www.ncbi.nlm.nih.gov/pubmed/33322785
http://doi.org/10.1016/j.phpro.2012.10.025
http://doi.org/10.1080/05704928.2012.705800
http://doi.org/10.1080/05704928.2013.838678
http://doi.org/10.1016/j.jpba.2008.08.014
http://doi.org/10.3390/recycling4040040
http://arxiv.org/pdf/1802.08701v2
http://doi.org/10.1016/j.isprsjprs.2019.09.006
http://doi.org/10.1117/1.JBO.19.1.010901
http://www.ncbi.nlm.nih.gov/pubmed/24441941
http://doi.org/10.3390/rs12162659
http://doi.org/10.3390/coatings11111388
http://doi.org/10.3390/coatings11040467
https://keras.io/getting_started/faq/#how-should-i-cite-keras
http://arxiv.org/pdf/1412.6980v9

	Introduction 
	Materials and Methods 
	Materials 
	Process Chain 
	Laser Pre-Treatment Process 
	Thermal Spraying 
	Hyperspectral Imaging 
	Data Preprocessing and Analysis 
	Data Evaluation 
	Optical Characterization Method 


	Results and Discussion 
	Laser Structuring Treatment 
	Coating Deposition 
	HSI Measurements of Laser Processed Surfaces 
	Data Analysis and Training 

	Conclusions 
	Patents 
	Appendix A
	References

