High-Peak-Power Sub-Nanosecond Mode-Locking Pulses Generated by a Dual-Loss-Modulated QML Laser with AOM and SnSe2
Abstract
:1. Introduction
2. Preparation and Characterization of SnSe2-SA
3. Experimental Setup and Results
3.1. Experimental Setup
3.2. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Peng, Q.J.; Zong, N.; Zhang, S.J.; Wang, Z.M.; Yang, F.; Zhang, F.F.; Zhou, X.J. DUV/VUV all-solid-state lasers: Twenty years of progress and the future. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1602312. [Google Scholar] [CrossRef]
- Steiner, R. New laser technology and future applications. Med. Laser Appl. 2006, 21, 131–140. [Google Scholar] [CrossRef]
- Salim, A.A.; Bidin, N. Pulse Q-switched Nd: YAG laser ablation grown cinnamon nanomorphologies: Influence of different liquid medium. J. Mol. Struct. 2017, 1149, 694–700. [Google Scholar] [CrossRef]
- Marakis, G.; Pouli, P.; Zafiropulos, V.; Kalaitzaki, P.M. Comparative study on the application of the 1st and the 3rd harmonic of a Q-switched Nd: YAG laser system to clean black encrustation on marble. J. Cult. Herit. 2003, 4, 83–91. [Google Scholar] [CrossRef]
- O’Mahony, M.J.; Simeonidou, D.; Hunter, D.K.; Tzanakaki, A. The application of optical packet switching in future communication networks. IEEE Commun. Mag. 2001, 39, 128–135. [Google Scholar]
- Ma, Y.F.; Yu, X.; Li, X.D.; Fan, R.G.; Yu, G.H. Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping. Appl. Opt. 2011, 50, 3854–3859. [Google Scholar] [CrossRef]
- Ma, Y.F.; Zhang, S.C.; Ding, S.J.; Liu, X.X.; Yu, X.; Peng, F.; Zhang, Q.L. Passively Q-switched Nd:GdLaNbO4 laser based on 2D PdSe2 nanosheet. Opt. Laser Technol. 2020, 124, 105959. [Google Scholar] [CrossRef]
- Schmidt, A.; Griebner, U.; Zhang, H.J.; Wang, J.Y.; Jiang, M.H.; Liu, J.H.; Petrov, V. Passive mode-locking of the Yb: CNGG laser. Opt. Commun. 2010, 283, 567–569. [Google Scholar] [CrossRef]
- Zhang, H.J.; Zhao, S.Z.; Zhao, J.; Yang, K.J.; Li, G.Q.; Li, D.C.; Li, T.; Qiao, W.C.; Wang, Y.G. Generation of low repetition rate sub-nanosecond pulses in doubly QML Nd: Lu0.5Y0.5VO4 and Nd:YVO4 lasers with EO and transmission SSA. Opt. Laser Technol. 2015, 69, 39–43. [Google Scholar] [CrossRef]
- Tang, W.; Zhao, J.; Yang, K.; Zhao, S.; Li, G.; Li, D.; Li, T.; Qiao, W. Experimental and Theoretical Investigation on Subnanosecond Pulse Characteristics from Doubly QML Nd: Lu0.5Y0.5VO4 Green Laser. IEEE J. Quantum Electron. 2015, 51, 1700208. [Google Scholar]
- Dong, L.; Huang, W.C.; Chu, H.W.; Li, Y.; Wang, Y.Z.; Zhao, S.Z.; Li, G.Q.; Zhang, H.; Li, D.C. Passively Q-switched near-infrared lasers with bismuthene quantum dots as the saturable absorber. Opt. Laser Technol. 2020, 128, 106219. [Google Scholar] [CrossRef]
- Guo, B.; Xiao, Q.L.; Wang, S.H.; Zhang, H. 2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications. Laser Photonics Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Chu, H.W.; Pan, Z.B.; Wang, X.; Zhao, S.Z.; Li, G.Q.; Cai, H.Q.; Li, D.C. Passively Q-switched Tm:Ca(Lu0.1Gd)AlO4 laser at 2 μm with hematite nanosheets as the saturable absorber. Opt. Exp. 2020, 28, 16893–16899. [Google Scholar] [CrossRef]
- Zhang, B.T.; Liu, J.; Wang, C.; Yang, K.J.; Lee, C.K.; Zhang, H.; He, J.L. Recent progress in 2D material-based saturable absorbers for all solid-state pulsed bulk lasers. Laser Photonics Rev. 2020, 14, 1900240. [Google Scholar] [CrossRef]
- Chu, H.W.; Dong, L.; Pan, Z.B.; Ma, X.Y.; Zhao, S.Z.; Li, D.C. Passively Q-switched Tm:YAP laser with a zeolitic imidalate framework-67 saturable absorber operating at 3H4 → 3H5 transition. Opt. Laser Technol. 2022, 147, 107679. [Google Scholar] [CrossRef]
- Zhong, H.; Yu, J.; Kuang, X.; Huang, K.; Yuan, S. Electronic and optical properties of monolayer tin diselenide: The effect of doping, magnetic field, and defects. Phys. Rev. B 2020, 101, 125430. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Xiao, B.; Tang, G.; Hong, J. Transport Properties and High Thermopower of SnSe2: A Full AbInitio Investigation. J. Phys. Chem. C 2017, 121, 225–236. [Google Scholar] [CrossRef]
- Gonzalez, J.M.; Oleynik, I.I. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B 2016, 94, 125443. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Xu, K.; Wang, Z.; Shifa, T.A.; Wang, Q.; Wang, F.; Jiang, C.; He, J. Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties. Nanoscale 2015, 7, 17375–17380. [Google Scholar] [CrossRef]
- Yu, P.; Yu, X.; Lu, W.; Lin, H.; Sun, L.; Du, K.; Liu, F.; Fu, W.; Zeng, Q.; Shen, Z.; et al. Fast photoresponse from 1T tin diselenide atomic layers. Adv. Funct. Mater. 2016, 26, 137–145. [Google Scholar] [CrossRef]
- Cheng, C.; Li, Z.; Dong, N.; Wang, J.; Chen, F. Tin diselenide as a new saturable absorber for generation of laser pulses at 1 μm. Opt. Exp. 2017, 25, 6132–6140. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Yang, Q.; Zuo, C.H.; Cao, Y.P.; Lun, X.L.; Wang, P.C.; Wang, X.Y. 2 μm passive Q-switched Tm:YAP laser with SnSe2 absorber. Opt. Eng. 2018, 57, 126105. [Google Scholar] [CrossRef]
- Wang, M.X.; Wang, Z.P.; Xu, X.G.; Duan, S.H.; Du, C.L. Tin diselenide-based saturable absorbers for eye-safe pulse lasers. Nanotechnology 2019, 30, 265703. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.Y.; Zhang, H.N.; Xu, N.N. High-power passively Q-switched Yb-doped fiber laser based on tin selenide as a saturable absorber. Laser Phys. 2018, 28, 085105. [Google Scholar] [CrossRef]
- Hu, Q.; Li, M.; Li, P.; Liu, Z.; Cong, Z.; Chen, X. Dual-Wavelength Passively Mode-Locked Yb-Doped Fiber Laser Based on a SnSe2-PVA Saturable Absorber. IEEE Photonics J. 2019, 11, 1503413. [Google Scholar] [CrossRef]
- Sun, W.S.; Tang, W.J.; Li, X.Y.; Jiang, K.; Wang, J.; Xia, W. Stable soliton pulse generation from a SnSe2-based mode-locked fiber laser. Infrared Phys. Technol. 2020, 110, 103451. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Sun, W.G.; Yuan, Y.; Zhang, H.K.; Tang, W.J.; Xia, W. Generation of rectangular pulses in ytterbium-doped fiber laser based on a SnSe2 saturable absorber. Infrared Phys. Technol. 2022, 120, 103974. [Google Scholar] [CrossRef]
- Li, T.; Zhao, S.; Zhuo, Z.; Yang, K.; Li, G.; Li, D. Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber. Opt. Exp. 2010, 18, 10315. [Google Scholar]
- Tang, W.J.; Zhao, J.; Li, T.; Yang, K.J.; Zhao, S.Z.; Li, G.Q.; Li, D.C.; Qiao, W.C. High-peak-power mode-locking pulse generation in a dual-loss-modulated laser with BP-SA and EOM. Opt. Lett. 2017, 42, 4820–4823. [Google Scholar] [CrossRef]
- Taube, A.; Łapińska, A.; Judek, J.; Zdrojek, M. Temperature dependence of Raman shifts in layered ReSe2 and SnSe2 semiconductor nanosheets. Appl. Phys. Lett. 2015, 107, 013105. [Google Scholar] [CrossRef]
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef]
- Zhao, G.; Han, S.; Wang, A.; Wu, Y.; Zhao, M.; Wang, Z.; Hao, X. ‘Chemical Weathering’ Exfoliation of Atom-Thick Transition Metal Dichalcogenides and Their Ultrafast Saturable Absorption Properties. Adv. Funct. Mater. 2015, 25, 5292–5299. [Google Scholar] [CrossRef]
- Wang, S.X.; Yu, H.H.; Zhang, H.J.; Wang, A.Z.; Zhao, M.W.; Chen, Y.X.; Mei, L.M.; Wang, J.Y. Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 2014, 26, 3538–3544. [Google Scholar] [CrossRef]
- Wegner, U.; Meier, J.; Lederer, M.J. Compact picosecond mode-locked and cavity-dumped Nd:YVO4 laser. Opt. Express 2009, 17, 23098–23103. [Google Scholar] [CrossRef]
- Zhang, H.J.; Liu, J.H.; Wang, J.Y.; Wang, C.Q.; Zhu, L.; Shao, Z.S.; Meng, X.L.; Hu, X.B.; Chow, Y.T.; Jiang, M.H. Laser properties of different Nd-doped concentration Nd:YVO4 laser crystals. Opt. Lasers Eng. 2002, 38, 527–536. [Google Scholar] [CrossRef]
- Digital Phosphor Oscilloscopes Quick Start User Manual; Tektronix Inc.: Beaverton, OR, USA, 2013.
- Yang, K.; Zhao, S.; He, J.; Zhang, B.; Zuo, C.; Li, G.; Li, D.; Li, M. Diode-pumped passively Q-switched and mode-locked Nd:GdVO4 laser at 1.34 microm with V:YAG saturable absorber. Opt. Express 2008, 16, 20176–20185. [Google Scholar] [CrossRef]
- Weller, D. Relating wideband DSO rise time to bandwidth: Lose the 0.35! EDN 2002, 47, 89–94. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Z.; Xu, B.; Hu, X.; Jiang, K.; Wang, J.; Tang, W.; Cao, L. High-Peak-Power Sub-Nanosecond Mode-Locking Pulses Generated by a Dual-Loss-Modulated QML Laser with AOM and SnSe2. Photonics 2022, 9, 471. https://doi.org/10.3390/photonics9070471
Dai Z, Xu B, Hu X, Jiang K, Wang J, Tang W, Cao L. High-Peak-Power Sub-Nanosecond Mode-Locking Pulses Generated by a Dual-Loss-Modulated QML Laser with AOM and SnSe2. Photonics. 2022; 9(7):471. https://doi.org/10.3390/photonics9070471
Chicago/Turabian StyleDai, Zihao, Baohao Xu, Xinyu Hu, Kai Jiang, Jing Wang, Wenjing Tang, and Lihua Cao. 2022. "High-Peak-Power Sub-Nanosecond Mode-Locking Pulses Generated by a Dual-Loss-Modulated QML Laser with AOM and SnSe2" Photonics 9, no. 7: 471. https://doi.org/10.3390/photonics9070471
APA StyleDai, Z., Xu, B., Hu, X., Jiang, K., Wang, J., Tang, W., & Cao, L. (2022). High-Peak-Power Sub-Nanosecond Mode-Locking Pulses Generated by a Dual-Loss-Modulated QML Laser with AOM and SnSe2. Photonics, 9(7), 471. https://doi.org/10.3390/photonics9070471