A Continuously Tunable and Filter-Less QPSK Modulated Millimeter-Wave Signal Generation with Frequency Quadrupling Just Based on an MZM
Abstract
:1. Introduction
2. Principle and Theoretical Analysis
3. Simulation Setup and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadi, M.U.; Awais, M.; Raza, M.; Ashraf, M.I.; Song, J. Experimental Demonstration and Performance Enhancement of 5G NR Multiband Radio over Fiber System Using Optimized Digital Predistortion. Appl. Sci. 2021, 11, 11624. [Google Scholar] [CrossRef]
- Mufutau, A.O.; Guiomar, F.P.; Fernandes, M.; Lorences-Riesgo, A.; Oliveira, A.; Monteiro, P.P. Demonstration of a hybrid optical fiber–wireless 5G fronthaul coexisting with end-to-end 4G networks. J. Opt. Commun. Netw. 2020, 12, 72. [Google Scholar] [CrossRef]
- Hadi, M.; Awais, M.; Raza, M.; Khurshid, K.; Jung, H. Neural Network DPD for Aggrandizing SM-VCSEL-SSMF-Based Radio over Fiber Link Performance. Photonics 2021, 8, 19. [Google Scholar] [CrossRef]
- Vieira, L.C.; Gomes, N.J.; Nkansah, A. An experimental study on digital predistortion for radio-over-fiber links. In Proceedings of the Asia Communications and Photonics Conference and Exhibition, Shanghai, China, 8–12 December 2010; Optica Publishing Group: Washington, DC, USA, 2010; p. 798828. [Google Scholar]
- Hadi, M.U.; Traverso, P.A.; Tartarini, G.; Venard, O.; Baudoin, G.; Polleux, J.-L. Digital Predistortion for Linearity Improvement of VCSEL-SSMF-Based Radio-Over-Fiber Links. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 155–157. [Google Scholar] [CrossRef]
- Xiao, J.; Feng, X.; Zhao, M.; Liu, B.; Dong, X.; Zhao, C.; Zuo, J.; Zhang, J.; Zhao, L. W-band Millimeter-Wave Signal Generation Based on Frequency Quadrupling and Nonlinearities Tolerant Modulation. J. Light. Technol. 2020, 39, 1756–1761. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Chang, G.-K. Photonics-aided mm-wave communication for 5G. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019. [Google Scholar]
- Hadi, M.U.; Kantana, C.; Traverso, P.A.; Tartarini, G.; Venard, O.; Baudoin, G.; Polleux, J.L. Assessment of digital predistortion methods for DFB-SSMF radio-over-fiber links linearization. Microw. Opt. Technol. Lett. 2020, 62, 540–546. [Google Scholar] [CrossRef]
- Hadi, M.U.; Nanni, J.; Polleux, J.L.; Traverso, P.A.; Tartarini, G. Direct digital predistortion technique for the compensation of laser chirp and fiber dispersion in long haul radio over fiber links. Opt. Quantum Electron. 2019, 51, 1–20. [Google Scholar] [CrossRef]
- Zeng, H.; Liu, X.; Megeed, S.; Shen, A.; Effenberger, F. Digital signal processing for high-speed fiber-wireless convergence. J. Opt. Commun. Netw. 2019, 11, A11–A19. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Chang, G.-K. Photonics-Aided Millimeter-Wave Technologies for Extreme Mobile Broadband Communications in 5G. J. Light. Technol. 2019, 38, 366–378. [Google Scholar] [CrossRef]
- Zhou, Z.; He, J.; Liu, Y.; Ma, J.; Xiao, Y. Enhanced sampling frequency offset resistance method based on precoding technique in W-band OFDM RoF systems. Opt. Commun. 2020, 467, 125711. [Google Scholar] [CrossRef]
- Xiao, J.; Feng, X.; Zhou, W.; Liu, B.; Dong, X.; Zhao, C.; Zuo, J.; Zhang, J.; Zhao, L. Generation of (3, 1) vector signals based on optical carrier suppression without pre-coding. Opt. Lett. 2020, 45, 1009–1012. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Liu, X.; Zhang, H.; Wang, C.; Wang, X.; Zhang, Y.; Ran, D. Photonic vector millimeter-wave signal generation by optical dual-SSB modulation and a single push-pull MZM. Opt. Lett. 2019, 44, 3570–3573. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhou, W.; Zhao, L.; Xiao, J.; Li, X.; Zhao, F.; Yu, J. A New Scheme to Generate Multi-Frequency Millimeter-wave Signals Based on Cascaded Phase Modulator and I/Q Modulator. IEEE Photonics J. 2019, 11, 5503008. [Google Scholar] [CrossRef]
- Zhao, L.; Xiong, L.; Liao, M.; Xia, J.; Pang, Y.; Shi, X. W-Band 8QAM Vector Millimeter-Wave Signal Generation Based on Tripling of Frequency Without Phase Pre-Coding. IEEE Access 2019, 7, 156978–156983. [Google Scholar] [CrossRef]
- Ma, J.; Wen, A.; Zhang, W.; Liang, M.; Tu, Z. Carrier-frequency-doubled photonic microwave vector signal generation based on PDM-MZM. Opt. Commun. 2019, 450, 347–351. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, L.; Zhang, J.; Wang, K. Four Sub-Channel Single Sideband Generation of Vector millimeter-wave Based on an I/Q Modulator. IEEE Photonics J. 2019, 11, 7104409. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, S.; Zhang, K.; Lin, T.; Li, X.; Zhao, G.; Jiang, W. Photonic generation of microwave binary modulation signals with high frequency multiplication factors. Opt. Commun. 2019, 443, 96–103. [Google Scholar] [CrossRef]
- Wang, D.; Tang, X.; Xi, L.; Zhang, X.; Zhang, W.; Zhang, H. A scheme to generate 16QAM-OFDM vector mm-wave signal based on a single MZM without optical filter and precoding. Opt. Commun. 2020, 475, 126227. [Google Scholar] [CrossRef]
- Wang, D.; Hui, S.; Ding, H.; Li, Z.; Li, Z.; Sun, D. A New and Simple Frequency Quadrupling Millimeter-Wave Signal Generation Enabled by a Single Mach-Zehnder Modulator without Optical Filter. J. Nanoelectron. Optoelectron. 2021, 16, 1886–1891. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Yu, J. Dispersion-tolerant millimeter-wave signal generation by a single modulator. Opt. Commun. 2020, 475, 126204. [Google Scholar] [CrossRef]
- Kumar, R.; Raghuwanshi, S.K. Photonic generation of a parabolic-shaped microwave signal and dual-linear-chirp microwave waveform. Appl. Opt. 2020, 59, 6024–6029. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Tang, X.; Xi, L.; Zhang, X.; Fan, Y. A filterless scheme of generating frequency 16-tupling millimeter-wave based on only two MZMs. Opt. Laser Technol. 2019, 116, 7–12. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, Q.; Li, X.; Wang, D. Photonic generation of background-free frequency-doubled phase-coded microwave pulses with immunity to periodic power fading. Opt. Lett. 2020, 45, 1407–1410. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, J.; Lu, H.; Ning, T.; Pei, L.; Li, J. Photonic frequency-octupling scheme for stable microwave generation based on two incoherent optical sources. OSA Contin. 2020, 3, 1038–1048. [Google Scholar] [CrossRef]
- Wang, Y.; Chien, H.-C.; Guo, H.; Yu, J.; Chang, G.-K.; Chi, N. Photonic RF vector signal generation with enhanced spectral efficiency using precoded double single-sideband modulation. Opt. Lett. 2016, 41, 2557–25603. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiao, J.; Yu, J. W-Band Vector Millimeter-Wave Signal Generation Based on Phase Modulator With Photonic Frequency Quadrupling and Precoding. J. Light. Technol. 2017, 35, 2548–2558. [Google Scholar] [CrossRef]
- Zhou, W.; Li, X.; Yu, J. Pre-coding assisted generation of a frequency quadrupled optical vector D-band millimeter wave with one Mach-Zehnder modulator. Opt. Express 2017, 25, 26483–26491. [Google Scholar] [CrossRef]
- Li, X.; Zhao, S.; Zhu, Z.; Qu, K.; Lin, T.; Pan, S. Frequency-octupled phase-coded signal generation based on carrier-suppressed high-order double sideband modulation. Chin. Opt. Lett. 2017, 15, 070603. [Google Scholar]
- Wang, D.; Tang, X.; Xi, L. Orthogonal Frequency Division Multiplexing Vector Millimeter-Wave Generation Based on Two Parallel Phase Modulators. Acta Opt. Sin. 2020, 40, 1806006. [Google Scholar]
- Huang, Y.; Yu, J. Low complexity QPSK/8QAM millimeter-wave signal generation at D-band without phase pre-coding. Opt. Commun. 2020, 474, 126062. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Xiao, J.; Yu, J. W-band millimeter-wave vector signal generation based on precoding-assisted random photonic frequency tripling scheme enabled by phase modulator. IEEE Photonics J. 2016, 8, 1–10. [Google Scholar] [CrossRef]
Device | Parameter | Value |
---|---|---|
CW Laser | Frequency | 193.1 THz |
Linewidth | 10 MHz | |
RF source PS | Frequency Shift value | 10 GHz 180 degrees |
MZM | Half-wave voltage Insertion loss Extinction ratio | 3.2 V 5 dB 30 dB |
Attenuator-1 SMF | Attenuation coefficient Length Attenuation Dispersion | 7.24 dB5 km 0.2 dB/km 16.75 ps/nm/km |
PD | Responsivity | 1 A/W |
Dark current | 10 nA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Liu, B.; Wang, D. A Continuously Tunable and Filter-Less QPSK Modulated Millimeter-Wave Signal Generation with Frequency Quadrupling Just Based on an MZM. Photonics 2022, 9, 474. https://doi.org/10.3390/photonics9070474
Hu H, Liu B, Wang D. A Continuously Tunable and Filter-Less QPSK Modulated Millimeter-Wave Signal Generation with Frequency Quadrupling Just Based on an MZM. Photonics. 2022; 9(7):474. https://doi.org/10.3390/photonics9070474
Chicago/Turabian StyleHu, Haifeng, Baoju Liu, and Dongfei Wang. 2022. "A Continuously Tunable and Filter-Less QPSK Modulated Millimeter-Wave Signal Generation with Frequency Quadrupling Just Based on an MZM" Photonics 9, no. 7: 474. https://doi.org/10.3390/photonics9070474
APA StyleHu, H., Liu, B., & Wang, D. (2022). A Continuously Tunable and Filter-Less QPSK Modulated Millimeter-Wave Signal Generation with Frequency Quadrupling Just Based on an MZM. Photonics, 9(7), 474. https://doi.org/10.3390/photonics9070474