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Abstract: We propose and theoretically investigate two-photon orbital angular momentum (OAM)
correlation through spontaneous parameter down-conversion (SPDC) processes in three-dimensional
(3D) spiral nonlinear photonic crystals (NPCs). By properly designing the NPC structure, one can
feasibly modulate the OAM-correlated photon pair, which provides a potential platform to realize
high-dimensional entanglement for quantum information processing and quantum communications.
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1. Introduction

Entangled photons play an important role in quantum information sciences. One of
the most common methods to generate entangled photons is spontaneous parametric down-
conversion (SPDC) [1–3], in which a photon pumped into a nonlinear crystal is converted
into a photon pair that satisfies the conservations of momentum and energy [4,5]. Photonic
crystals have been widely applied in waveguides, optical encoders, and collimators [6–9].
Inspired by this concept, through fabricating χ(2) structures inside a nonlinear crystal
(i.e., nonlinear photonic crystal (NPC)), entanglement of down-converted photons with
respect to polarization, frequency, space, and orbital angular momentum (OAM) has been
experimentally realized [10–12].

One typical OAM-carrying mode is Laguerre-Gauss (LG) mode [13] with its transverse
distribution being expressed as

LGl
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)
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where w is the beam waist, L|l|p (x) is the associated Laguerre polynomial, l represents
the OAM number, and p is the radial mode index. OAM has an infinite Hilbert space,
which composes a useful basis for high-dimensional entanglement. Applications of high-
dimensional OAM entanglement include quantum key distribution and quantum spiral
imaging [14–16]. The main method to generate OAM entanglement is SPDC [17–20].
Experimentally, two-photon OAM correlation can be controlled by fabricating different
NPC structures to modify the quasi-phase matching (QPM) conditions, or by shaping the
pump light [21,22]. The NPC structure can introduce reciprocal lattice vectors to satisfy
the QPM conditions to improve the SPDC efficiency [23]. Two-dimensional (2D) NPCs
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have been utilized to prepare high-dimensional path-entanglement states [24] or to realize
wave-front control [25]. However, it cannot effectively manipulate OAM entanglement
through QPM engineering because 2D NPC cannot satisfy the requirements of QPM and
wavefront shaping at the same time [26,27]. The recent development of three-dimensional
(3D) NPCs via the femtosecond laser direct-writing technique has the potential to solve
this problem [28–32]. Here, we theoretically investigate the OAM correlation and the
two-photon yield by SPDC processes in 3D spiral NPCs.

2. Theory

We consider a type-0 (eee) SPDC process in a 3D spiral NPC. 3D NPCs can be fabricated
via femtosecond-laser writing in a z-cut LiNbO3 crystal. As shown in Figure 1, the second-
order nonlinear coefficient distribution in 3D NPC is [33]

χ2(z, ϕ) = ηd33sign
(

cos
(

2π

Λ
z + lc ϕ

))
= ηd33 ∑

n
Fnein 2π

Λ zeinlc ϕ (2)

Photonics 2022, 9, x FOR PEER REVIEW 2 of 9 
 

 

𝐿𝐺𝑝
𝑙(𝜌, 𝜑) = √

2𝑝!

𝜋(|𝑙|+𝑝)!

1

𝑤
(
√2𝜌

𝑤
)
|𝑙|

𝐿𝑝
|𝑙| (

2𝜌2

𝑤2 ) 𝑒
−
𝜌2

𝑤2𝑒𝑖𝑙𝜑, (1) 

where 𝑤 is the beam waist, 𝐿𝑝
|𝑙|(𝑥) is the associated Laguerre polynomial, 𝑙 represents 

the OAM number, and 𝑝 is the radial mode index. OAM has an infinite Hilbert space, 

which composes a useful basis for high-dimensional entanglement. Applications of high-

dimensional OAM entanglement include quantum key distribution and quantum spiral 

imaging [14–16]. The main method to generate OAM entanglement is SPDC [17–20]. Ex-

perimentally, two-photon OAM correlation can be controlled by fabricating different NPC 

structures to modify the quasi-phase matching (QPM) conditions, or by shaping the pump 

light [21,22]. The NPC structure can introduce reciprocal lattice vectors to satisfy the QPM 

conditions to improve the SPDC efficiency [23]. Two-dimensional (2D) NPCs have been 

utilized to prepare high-dimensional path-entanglement states [24] or to realize wave-

front control [25]. However, it cannot effectively manipulate OAM entanglement through 

QPM engineering because 2D NPC cannot satisfy the requirements of QPM and wave-

front shaping at the same time [26,27]. The recent development of three-dimensional (3D) 

NPCs via the femtosecond laser direct-writing technique has the potential to solve this 

problem [28–32]. Here, we theoretically investigate the OAM correlation and the two-pho-

ton yield by SPDC processes in 3D spiral NPCs. 

2. Theory 

We consider a type-0 (eee) SPDC process in a 3D spiral NPC. 3D NPCs can be fabri-

cated via femtosecond-laser writing in a z-cut LiNbO3 crystal. As shown in Figure 1, the 

second-order nonlinear coefficient distribution in 3D NPC is [33] 

𝜒2(𝑧, 𝜑) = 𝜂𝑑33𝑠𝑖𝑔𝑛(cos(
2𝜋

Λ
𝑧 + 𝑙𝑐𝜑)) = 𝜂𝑑33∑𝐹𝑛𝑒

𝑖𝑛
2𝜋
Λ
𝑧𝑒𝑖𝑛𝑙𝑐𝜑

𝑛

 (2) 

 

Figure 1. Schematic of SPDC in a 3D spiral NPC and the corresponding QPM condition. 

Here, 𝜑 = arctan(y/x) is the azimuthal angle, 𝑙𝑐  is the topological charge of the 

NPC structure, 𝜂 denotes the modulation depth of nonlinear coefficients, 𝑑33 is the non-

linear coefficient of LiNb𝑂3  crystal, and 𝐹𝑛 =
2

𝑛𝜋
sin 𝑛𝜋𝐷  are Fourier coefficients corre-

sponding to the reciprocal vector 𝐺𝑛 =
2𝜋𝑛

Λ
𝑧. D is the duty cycle. When D = 0.5, the maxi-

mum Fourier coefficient 𝐹1 = 0.635 can be used by involving the first-order reciprocal 

lattice vectors 𝐺1. 

The interaction Hamiltonian of the SPDC process is 

𝐻𝐼 = 𝜀0 ∫𝑑𝑉𝜒
2(𝑟)𝐸𝑝

+𝐸𝑠
−𝐸𝑖

− + ℎ. 𝑐., (3) 

Figure 1. Schematic of SPDC in a 3D spiral NPC and the corresponding QPM condition.

Here, ϕ = arctan(y/x) is the azimuthal angle, lc is the topological charge of the NPC
structure, η denotes the modulation depth of nonlinear coefficients, d33 is the nonlinear
coefficient of LiNbO3 crystal, and Fn = 2

nπ sin nπD are Fourier coefficients corresponding
to the reciprocal vector Gn = 2πn

Λ z. D is the duty cycle. When D = 0.5, the maximum
Fourier coefficient F1 = 0.635 can be used by involving the first-order reciprocal lattice
vectors G1.

The interaction Hamiltonian of the SPDC process is

HI = ε0

∫
dV χ2(r)E+

p E−s E−i + h.c., (3)

where ε0 denotes the vacuum permittivity, E+ and E− are respectively the positive and
negative conjugate terms of the electric field, the subscripts p, s, and i respectively represent
the pump, signal, and idler lights, and h.c. is Hermitian conjugate term. Assuming that the
pump light is a normal-incidence monochromatic wave of

E+
p = Epei(kpzz−ωpt) f (x, y), (4)

where Ep denotes the amplitude of the pump light, f (x, y) is the transverse mode of the

pump light, and kpz =
√

Kp2 − qp2. The first-order Taylor expansion of kpz is kpz =

Kp −
|qp|2
2Kp

, where Kp = npωp/c and qp is transverse momentum that satisfies qp � Kp.
The down-converted photon can be written as

E−j = Ej

∫
d
→
q j

∫
dωje

−i(
→
kj ·
→
r −ωjt) â+j

(→
q j, ωj

)
(5)
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where â+j (j = s, i) denotes the creation operator, ωj is the photon frequency,
→
k j = k j

→
ez +

qj
→
eρ, k j = Kj −

|qj|2
2Kj

, Kj = njωj/c,
→
q j is the transverse component of the wave vector.

Considering the nth-order reciprocal lattice vector participates in the QPM process, the
Hamiltonian can be written as

HI = ALFnei ∆kz L
2 sinc

(
∆kz L

2

) ∫
dωs

∫
dωiei(ωs+ωi−ωp)t

×
∫

d
→
q s
∫

d
→
q i

s
dxdy f (x, y)ei∆kqρeinlc ϕ â+s

(→
q s, ωs

)
â+i
(→

q i, ωi

)
,

(6)

where A is proportional to ηd33 and L is the crystal length. In our scheme, the reciprocal
vectors along the z direction are used to satisfy the QPM condition. We assume a frequency
broadening νj of the down-converted photon, i.e., ωj = Ωj + νj(j = s, i). Here, Ωj is
the central frequency. Considering the energy conservation ωp = ωs + ωi, we have
νs = −νi = ν. The phase-matching condition is

2πn
Λ

+ Kp − Ks − Ki = 0. (7)

By expanding wave vectors in ν, the longitudinal and transverse phase mismatches can be
written as

∆kz = −ν

(
1

us(Ωs)
− 1

ui(Ωi)

)
− ν2

d 1
us(Ωs)

2dωs
+

d 1
ui(Ωi)

2dωi

, (8)

∆kq = −(qs + qi), (9)

where uj
(
Ωj
)
(j = s, i) is the group velocity at central frequency. Through first-order per-

turbation theory, the two-photon state wave function can be obtained as

|Ψ〉 = A′LFn

∫
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with h(∆kzL) = ei ∆kz L
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2

)
, F
(
∆kq

)
=

s
dxdy f (x, y)ei∆kqρeinlc ϕ and A′ = − i2πA

} .
Next, we expand the two-photon state by LG eigenstates, i.e.,

|Ψ〉 = ∑ls ,ps ∑li ,pi
Cls ,li

ps ,pi |ls, ps; li, pi〉, (11)

with
Cls ,li

ps ,pi = 〈ls, ps; li, pi |Ψ 〉, (12)

and

|ls, ps; li, pi〉 =
∫

d
→
q s

∫
d
→
q iLGls

ps

(→
q s

)
LGli

pi

(→
q i

)
â+s
(→

q s, ωs

)
â+i
(→

q i, ωi

)
|0 〉, (13)

where LG
lj
pj

(→
q j

)
are the normalized LG modes in k-space. If considering the incident pump

light as an LG mode, we have

Cls ,li
ps ,pi = A′′ LFnδ

(
nlc + lp − ls − li

)
Pls ,li

ps ,pi (14)

Pls ,li
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√
2pp!ps!pi!(|lp|+pp)!(|ls |+ps)!(|li |+pi)!
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|lp |+|ls |+|li |+3 2
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with

Q(α) =


Qe =

√
π

2α
α!(
α′
2

)
!

(
1
β

) α+1
2 , α is even

Qo =
(

α−1
2

)
!
(

1
β

) α+1
2 , α is odd

, (16)

where α =
∣∣lp
∣∣+ |ls|+ |li|+ 2jp + 2js + 2ji + 1, jp, js, ji are positive integers, β =

(γs
2+γi

2+1)
w2

p
,

γs =
wp
ws

, γi =
wp
wi

, and A′′ = 2A′
π . wp, ws, and wi are respectively the beam waists of the

pump, signal, and idler lights.
∣∣∣Cls ,li

ps ,pi

∣∣∣2 represents the joint detection probability of a signal
photon at |ls, ps〉 and an idler photon at |ls, ps〉

3. Results
3.1. Two-Photon OAM Correlation in a 3D Spiral NPC Structure

We illustrate the ability of a 3D spiral NPC structure to manipulate the high-dimensional
entanglement state. Note that the traditional 1D NPC cannot be utilized to modulate the
OAM correlation. First, we consider the case with γs = γi = 1, pp = ps = pi = 0, and
the involved reciprocal lattice vector being G1. The topological charge of the spiral NPC
structure is set to lc = 1 and the incident LG mode pump light has lp = 0. Because OAM
is conserved, i.e., ls + li = lc + lp = 1, the OAM of the obtained two photons is correlated
under a collinear SPDC configuration, satisfying ls = 1− li as shown in Figure 2a. Figure 2b
shows the result with lc = 2, lp = 0, in which the OAM correlation of the obtained collinear
two photons satisfies ls = 2− li.
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(a) (b) 

Figure 2. The incident light is a Gaussian mode. (a) The normalized spiral spectrum with lc = 1.
(b) The normalized spiral spectrum with lc = 2.

The 3D spiral NPC structure is also able to produce a high-dimensional maximally
entangled state. We set the topological charges of the NPC structure and the incident
LG mode pump light to lc = 1 and lp = −1,respectively. The OAM conservation dur-
ing such a SPDC process requires ls + li = lc + lp = 0. We can produce a 3D maximally
entangled state of |Ψ〉 = (|−1, 1〉 + |0 , 0〉+ |1,−1〉 )/

√
3 as shown in Figure 3a. If us-

ing lc = −lp = 2, we can produce a four-dimensional maximally entangled state of
|Ψ〉 = (|−3, 3〉 + |−4 , 4〉+ |3,−3〉 + |4,−4〉 )/2 as shown in Figure 3b.
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with 

Figure 3. A pump light carrying a topological charge opposite to lc is used to prepare maximally
entangled states. (a) The normalized spiral spectrum with lc = −lp = 1. (b) The normalized spiral
spectrum with lc = −lp = 2.

The generation rate of photon pairs can be estimated by the coincidence count rate R.
Here, we use Ep

2 = 2P/
(
ε0npcS

)
, where P is the pump power and S is the transverse area

of the pump light. Therefore,

R =
πωsωiP∆ΩL2Fn

2η2d33
2

ε0npnsnic3S
. (17)

According to the femtosecond laser direct-writing parameters in [26], d33 = 27.2pm/V,
η = 0.15, and F1 = 0.635, corresponding to the first-order reciprocal lattice vector. Assume
P = 1 mW, S = 0.01 mm2, L = 100 µm, and ∆Ω = 1 nm. Here, we use a 1 nm narrowband
filter to guarantee the signal to noise ratio. For QPM condition at λs = λi = 830 nm, the
structure period is Λ = 3.05 µm. Note that these structure parameters are obtainable in
experiment [28]. The generation rate is calculated to be 399 pairs/s, which is comparable to
the value in a traditional one-dimensional nonlinear photonic crystal [34].

3.2. Two-Photon OAM Correlation from the Cascaded 3D Spiral Structure

We consider an m-segment 3D spiral structure, where each segment carries a different
topological charge lm

c . The length of each section is Lm, and the corresponding phase-
matching order is n. The distance between the center of each segment is an integral
multiple of the coherence length. Thus, the structure function is

f (ϕ, z) = ∑m sign
(

cos
(

2π

Λ
z + lm

c ϕ

))
= ∑m ∑n Fnmein 2π

Λ zeinlm
c ϕ. (18)

The Fourier coefficient Fnm of the mth structure can be adjusted by optimizing the duty
cycle. Under such a scheme, the generated two-photon OAM state can be described as

|Ψ〉 = ∑m Cls ,li
ps ,pi

∣∣nlm
c + lp − l〉 s|l〉 i, (19)

with
Cls ,li

ps ,pi = A′′ ∑m LmFnm δ
(
nlm

c + lp − ls − li
)

Pls ,li
ps ,pi , (20)

We give two examples. In the first one, two 3D spiral structures of equal lengths are
cascaded, carrying topological charges of l1

c = 2 and l2
c = −2 (Figure 4a). Assume that

the first-order reciprocal lattice vectors are involved and the duty cycles are 0.5. Then, the
generated two-photon is OAM-correlated, satisfying ls + li = ±2. Figure 4b shows the
normalized spiral spectra of photon pairs. In this scheme, the idler photon is projected onto
an OAM state of |0〉 i while the signal photon collapses into a superposition of two OAM
modes, i.e., (C2|2〉 s + C−2|−2〉 s) (Figure 4c).
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Figure 4. (a) The incident light is a Gaussian mode. The NPC sample consists of two spiral structures
of opposite topological charges. (b) The normalized spiral spectrum with l1

c = 2, l2
c = −2. (c) The

spiral spectrum of the signal light when the idler light is projected onto the fundamental mode.

In the second example, we show that the weight in the spiral spectrum can be tuned by
adjusting the parameters of each segment. We consider that three spiral structures of equal
lengths are cascaded and the topological charges are l1

c = 2, l2
c = 0, l3

c = −2, respectively.
Assume that the first-order reciprocal lattice vectors are involved and the duty cycles are
0.5 (Figure 5a). The generated photon pair is OAM-correlated, satisfying ls + li = 0,±2.
The normalized spiral spectrum is shown in Figure 5c. In this case, the idler photon is
projected onto |0〉 i. The signal photon collapses into a superposition of three OAM modes
(C2|2〉 s + C0|0〉 s + C−2|−2〉 s) (Figure 5e). Then we change the length and the duty cycle of
each structure to modulate the spiral spectrum. For instance, we double the lengths of the
spiral structures with l1

c = −2, l3
c = 2 and set the duty cycle to 0.25 for the spiral structure

with l1
c = −2. The schematic is shown in Figure 5b. The normalized spiral spectrum

is shown in Figure 5d. In this case, the idler photon is projected onto |0〉 i. The signal
photon collapses into a superposition of three OAM modes (C′2|2〉 s + C′0|0〉 s + C′−2|−2〉 s)
(Figure 5f) with their weights being different from the values in Figure 5e.
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Figure 5. (a) The 3D spiral NPC consists of three segments of equal lengths S carrying topological
charges of l1

c = 2, l2
c = 0, l3

c = −2, respectively. The duty cycles are 0.5. (b) The cascaded spiral NPC
with l1

c = −2, S1 = 2S, D1 = 0.25, l2
c = 0, S2 = S, D2 = 0.5, l3

c = 2, S3 = 2S, D3 = 0.5. (c,d) are the
normalized spiral spectra corresponding to (a,b), respectively. (e,f) are the spiral spectra of the signal
lights corresponding to (c,d), respectively. Here, the idler light is projected onto the |0〉 i mode.

4. Discussion

We have theoretically analyzed the two-photon spiral spectra through SPDC processes
in 3D spiral NPCs. The numerical simulations show that the two-photon OAM correlation
can be controlled by using various spiral structures or shaping the pump light. In addition,
a 3D spiral NPC structure is capable of producing OAM-correlated photon pairs efficiently.
Our results pave the way for manipulating high-dimensional OAM entanglement for
quantum communication and quantum imaging.
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